NanoNET: an extendable Python framework for semi-empirical tight-binding models
We present a novel open-source Python framework called NanoNET (Nanoscale Non-equilibrium Electron Transport) for modelling electronic structure and transport. Our method is based on the tight-binding method and non-equilibrium Green's function theory. The core functionality of the framework is...
Saved in:
| Published in | arXiv.org |
|---|---|
| Main Authors | , , , |
| Format | Paper Journal Article |
| Language | English |
| Published |
Ithaca
Cornell University Library, arXiv.org
15.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-8422 |
| DOI | 10.48550/arxiv.2010.07463 |
Cover
| Summary: | We present a novel open-source Python framework called NanoNET (Nanoscale Non-equilibrium Electron Transport) for modelling electronic structure and transport. Our method is based on the tight-binding method and non-equilibrium Green's function theory. The core functionality of the framework is providing facilities for efficient construction of tight-binding Hamiltonian matrices from a list of atomic coordinates and a lookup table of the two-center integrals in dense, sparse, or block-tridiagonal forms. The framework implements a method based on \(kd\)-tree nearest-neighbour search and is applicable to isolated atomic clusters and periodic structures. A set of subroutines for detecting the block-tridiagonal structure of a Hamiltonian matrix and splitting it into series of diagonal and off-diagonal blocks is based on a new greedy algorithm with recursion. Additionally the developed software is equipped with a set of programs for computing complex band structure, self-energies of elastic scattering processes, and Green's functions. Examples of usage and capabilities of the computational framework are illustrated by computing the band structure and transport properties of a silicon nanowire as well as the band structure of bulk bismuth. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2010.07463 |