Wave focusing and related multiple dispersion transitions in plane Poiseuille flows

Motivated by the recent discovery of a dispersive-to-nondispersive transition for linear waves in shear flows, we accurately explored the wavenumber-Reynolds number parameter map of the plane Poiseuille flow, in the limit of least-damped waves. We have discovered the existence of regions of the map...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Fraternale, Federico, Nastro, Gabriele, Tordella, Daniela
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.03.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2103.04650

Cover

More Information
Summary:Motivated by the recent discovery of a dispersive-to-nondispersive transition for linear waves in shear flows, we accurately explored the wavenumber-Reynolds number parameter map of the plane Poiseuille flow, in the limit of least-damped waves. We have discovered the existence of regions of the map where the dispersion and propagation features vary significantly from their surroundings. These regions are nested in the dispersive, low-wavenumber part of the map. This complex dispersion scenario demonstrates the existence of linear dispersive focusing in wave envelopes evolving out of an initial, spatially localized, three-dimensional perturbation. An asymptotic wave packet's representation, based on the saddle-point method, allows to enlighten the nature of the packet's morphology, in particular the arrow-shaped structure and spatial spreading rates. A correlation is also highlighted between the regions of largest dispersive focusing and the regions which are most subject to strong nonlinear coupling in observations.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2103.04650