Thermodynamically consistent gradient elasticity with an internal variable

The role of thermodynamics in continuum mechanics and the derivation of the proper constitutive relations is a discussed subject of Rational Mechanics. The classical literature did not use the accumulated knowledge of thermostatics and was very critical with the heuristic methods of irreversible the...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Ván, Peter
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.05.2020
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2005.13662

Cover

More Information
Summary:The role of thermodynamics in continuum mechanics and the derivation of the proper constitutive relations is a discussed subject of Rational Mechanics. The classical literature did not use the accumulated knowledge of thermostatics and was very critical with the heuristic methods of irreversible thermodynamics. In this paper, a small strain gradient elasticity theory is constructed with memory effects and dissipation. The method is nonequilibrium thermodynamics with internal variables; therefore, the constitutive relations are compatible with thermodynamics by construction. Thermostatic Gibbs relation is introduced for elastic bodies with a single tensorial internal variable. The thermodynamic potentials are first-order weakly nonlocal, and the entropy production is calculated. Then the constitutive functions and the evolution equation of the internal variable is constructed. The second law analysis has shown a contribution of gradient terms to the stress, also without dissipation.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2005.13662