A novel classification-selection approach for the self updating of template-based face recognition systems

The boosting on the need of security notably increased the amount of possible facial recognition applications, especially due to the success of the Internet of Things (IoT) paradigm. However, although handcrafted and deep learning-inspired facial features reached a significant level of compactness a...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Orrù, Giulia, Marcialis, Gian Luca, Roli, Fabio
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.11.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1911.12688

Cover

More Information
Summary:The boosting on the need of security notably increased the amount of possible facial recognition applications, especially due to the success of the Internet of Things (IoT) paradigm. However, although handcrafted and deep learning-inspired facial features reached a significant level of compactness and expressive power, the facial recognition performance still suffers from intra-class variations such as ageing, facial expressions, lighting changes, and pose. These variations cannot be captured in a single acquisition and require multiple acquisitions of long duration, which are expensive and need a high level of collaboration from the users. Among others, self-update algorithms have been proposed in order to mitigate these problems. Self-updating aims to add novel templates to the users' gallery among the inputs submitted during system operations. Consequently, computational complexity and storage space tend to be among the critical requirements of these algorithms. The present paper deals with the above problems by a novel template-based self-update algorithm, able to keep over time the expressive power of a limited set of templates stored in the system database. The rationale behind the proposed approach is in the working hypothesis that a dominating mode characterises the features' distribution given the client. Therefore, the key point is to select the best templates around that mode. We propose two methods, which are tested on systems based on handcrafted features and deep-learning-inspired autoencoders at the state-of-the-art. Three benchmark data sets are used. Experimental results confirm that, by effective and compact feature sets which can support our working hypothesis, the proposed classification-selection approaches overcome the problem of manual updating and, in case, stringent computational requirements.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1911.12688