High-yield production of 2D crystals by wet-jet milling
Efficient and scalable production of two-dimensional (2D) materials is required to overcome technological hurdles towards the creation of a 2D-materials-based industry. Here, we present a novel approach developed for the exfoliation of layered crystals, i.e., graphite, hexagonal boron nitride and tr...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1804.10688 |
Cover
Summary: | Efficient and scalable production of two-dimensional (2D) materials is required to overcome technological hurdles towards the creation of a 2D-materials-based industry. Here, we present a novel approach developed for the exfoliation of layered crystals, i.e., graphite, hexagonal boron nitride and transition metal dichalcogenides. The process is based on high-pressure wet-jet-milling (WJM), resulting in 2 L/hr production of 10 g/L of single- and few-layer 2D crystal flakes in dispersion making the scaling-up more affordable. The WJM process enables the production of defect-free and high-quality 2D-crystal dispersions on a large scale, opening the way for the full exploitation in different commercial applications, e.g., anodes active material in lithium ion batteries, reinforcement in polymer-graphene composites, and transparent conductors as we demonstrate in this report. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1804.10688 |