In Situ Radiometric and Exposure Age Dating of the Martian Surface

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray–produced 3 He, 21 Ne, a...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 343; no. 6169; p. 389
Main Authors Farley, K. A., Malespin, C., Mahaffy, P., Grotzinger, J. P., Vasconcelos, P. M., Milliken, R. E., Malin, M., Edgett, K. S., Pavlov, A. A., Hurowitz, J. A., Grant, J. A., Miller, H. B., Arvidson, R., Beegle, L., Calef, F., Conrad, P. G., Dietrich, W. E., Eigenbrode, J., Gellert, R., Gupta, S., Hamilton, V., Hassler, D. M., Lewis, K. W., McLennan, S. M., Ming, D., Navarro-González, R., Schwenzer, S. P., Steele, A., Stolper, E. M., Sumner, D. Y., Vaniman, D., Vasavada, A., Williford, K., Wimmer-Schweingruber, R. F.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 24.01.2014
The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1247166

Cover

More Information
Summary:We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray–produced 3 He, 21 Ne, and 36 Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.1247166