Late Neogene Mountain Building of Eastern Kunlun Orogen: Constrained by DEM Analysis
Topography, as a net result of the dynamic interaction between endogenesis and exogenesis, holds immense information on tectonic uplift, surface erosion and thus mountain building. The eastern Kunlun (昆仑) orogen, which experienced significant Late Neogene tectonic uplift and is located in an arid en...
Saved in:
Published in | Journal of earth science (Wuhan, China) Vol. 20; no. 2; pp. 391 - 400 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
China University of Geosciences (Wuhan)
China University of Geosciences (Wuhan)
01.04.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1674-487X 1867-111X |
DOI | 10.1007/s12583-009-0032-1 |
Cover
Summary: | Topography, as a net result of the dynamic interaction between endogenesis and exogenesis, holds immense information on tectonic uplift, surface erosion and thus mountain building. The eastern Kunlun (昆仑) orogen, which experienced significant Late Neogene tectonic uplift and is located in an arid environment, is advantageous for morphotectonic analysis based on well-preserved tectonic landforms. The digital elevation model (DEM) analysis was carried out for the central segment of the eastern Kunlun orogen based on shuttle radar topography mission (SRTM) data. River longitudinal profile analysis indicates that major rivers across the orogen are characterized by high river gradient indexes and intensive tectonic uplift. Differential uplift was also identified in swath-topography analysis in the studied area, which can be divided into three major tectonic-geomorphie units by orogenicstrike-parallel faults. It is indicated that the most active region is located to the south of the Xidatan (西大滩) fault with significant differential uplift. Another identified fault with differential uplift is the Middle Kunlun fault; however, the timing of which is suggested to be much older than that of the Xidatan fault. These analyses are concordantly supported by both field survey and studies of thermochronology, which in turn indicates that the DEM analysis bears great potential in morphotectonic analysis. |
---|---|
Bibliography: | P588.1 P231.5 eastern Kunlun orogen, DEM analysis, mountain building. 42-1788/P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-487X 1867-111X |
DOI: | 10.1007/s12583-009-0032-1 |