Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer
The direct scission of the triple bond of dinitrogen (N2) by a metal complex is an alluring entry point into the transformation of N2 to ammonia (NH3) in molecular catalysis. Reported herein is a pincer-ligated rhenium system that reduces N2 to NH3 via a well-defined reaction sequence involving redu...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 51; pp. 20198 - 20208 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2019
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.9b10031 |
Cover
Summary: | The direct scission of the triple bond of dinitrogen (N2) by a metal complex is an alluring entry point into the transformation of N2 to ammonia (NH3) in molecular catalysis. Reported herein is a pincer-ligated rhenium system that reduces N2 to NH3 via a well-defined reaction sequence involving reductive formation of a bridging N2 complex, photolytic N2 splitting, and proton-coupled electron transfer (PCET) reduction of the metal–nitride bond. The new complex (PONOP)ReCl3 (PONOP = 2,6-bis(diisopropylphosphinito)pyridine) is reduced under N2 to afford the trans,trans-isomer of the bimetallic complex [(PONOP)ReCl2]2(μ-N2) as an isolable kinetic product that isomerizes sequentially upon heating into the trans,cis and cis,cis isomers. All isomers are inert to thermal N2 scission, and the trans,trans-isomer is also inert to photolytic N2 cleavage. In striking contrast, illumination of the trans,cis and cis,cis-isomers with blue light (405 nm) affords the octahedral nitride complex cis-(PONOP)Re(N)Cl2 in 47% spectroscopic yield and 11% quantum yield. The photon energy drives an N2 splitting reaction that is thermodynamically unfavorable under standard conditions, producing a nitrido complex that reacts with SmI2/H2O to produce a rhenium tetrahydride complex (38% yield) and furnish ammonia in 74% yield. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0001011 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b10031 |