A Supramolecular Approach for Modulated Photoprotection, Lysosomal Delivery, and Photodynamic Activity of a Photosensitizer
Prompted by a knowledge of the photoprotective mechanism operating in photosystem supercomplexes and bacterial antenna complexes by pigment binding proteins, we have appealed to a boxlike synthetic receptor (ExBox·4Cl) that binds a photosensitizer, 5,15-diphenylporphyrin (DPP), to provide photoprote...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 31; pp. 12296 - 12304 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.08.2019
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.9b03990 |
Cover
Summary: | Prompted by a knowledge of the photoprotective mechanism operating in photosystem supercomplexes and bacterial antenna complexes by pigment binding proteins, we have appealed to a boxlike synthetic receptor (ExBox·4Cl) that binds a photosensitizer, 5,15-diphenylporphyrin (DPP), to provide photoprotection by regulating light energy. The hydrophilic ExBox 4+ renders DPP soluble in water and modulates the phototoxicity of DPP by trapping it in its cavity and releasing it when required. While trapping removes access to the DPP triplet state, a pH-dependent release of diprotonated DPP (DPPH2 2+) restores the triplet deactivation pathway, thereby activating its ability to generate reactive oxygen species. We have employed the ExBox 4+-bound DPP complex (ExBox 4+⊃DPP) for the safe delivery of DPP into the lysosomes of cancer cells, imaging the cells by utilizing the fluorescence of the released DPPH2 2+ and regulating photodynamic therapy to kill cancer cells with high efficiency. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC) FG02-99ER14999 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b03990 |