Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement
We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less tha...
Saved in:
Published in | Environmental science & technology Vol. 44; no. 1; pp. 343 - 348 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.01.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 |
DOI | 10.1021/es902481f |
Cover
Abstract | We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf’s short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km−2, substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L−1, a level that is 80× lower than the lowest level considered safe for the most sensitive aquatic organisms. |
---|---|
AbstractList | We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km..., substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L..., a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms. (ProQuest: ... denotes formulae/symbols omitted.) We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf’s short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km−2, substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L−1, a level that is 80× lower than the lowest level considered safe for the most sensitive aquatic organisms. We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km(-2), substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L(-1), a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms. We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km(-2), substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L(-1), a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms.We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km(-2), substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L(-1), a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms. |
Author | Taddonio, Kristen N Andersen, Stephen O Papasavva, Stella Rugh, John P Luecken, Deborah J Hutzell, William T Waterland, Robert L |
Author_xml | – sequence: 1 givenname: Deborah J surname: Luecken fullname: Luecken, Deborah J email: luecken.deborah@epa.gov – sequence: 2 givenname: Robert L surname: Waterland fullname: Waterland, Robert L – sequence: 3 givenname: Stella surname: Papasavva fullname: Papasavva, Stella – sequence: 4 givenname: Kristen N surname: Taddonio fullname: Taddonio, Kristen N – sequence: 5 givenname: William T surname: Hutzell fullname: Hutzell, William T – sequence: 6 givenname: John P surname: Rugh fullname: Rugh, John P – sequence: 7 givenname: Stephen O surname: Andersen fullname: Andersen, Stephen O |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22362005$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19994849$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9qFDEUxoNU7LZ64QtIEEQLHZt_M5NcLq27LRRXZAXvhjOZEztlZrJNZi7qI_jUzdq1hSpIAoGTXz6-k-8ckL3BD0jIa84-cib4CUbDhNLcPSMznguW5Trne2TGGJeZkcX3fXIQ4zVjTEimX5B9boxRWpkZ-bX6mbQoDA1dL-b0ot-AHSNtB_rZh_GKznsMrQXqgu_pGf4I0MDY-oF6R8Wx3K5sjWMA100--E3amPQ-nC9WGRdS3bqjYzqnX_yIw9hCR5cBcbjyU0S6hEi_4qYDi326fUmeO-givtqdh-Tb4tP69Dy7XC0vTueXGajCjJlRTcFYqRUWtq45QK15YZ2TpQMl8rpUPJWcboqaaYaNELx2TDXaNVCa3MpD8v5eN5m9mTCOVd9Gi10HAyZfVZmrXAljxP9JKTUrZV4m8u0T8tpPYUhtVOnLeWmkyhP0ZgdNdY9NtQltD-G2-pNGAt7tAIgWOhdgsG184ISQhWBsK3R0z9ngYwzoHqVYtZ2I6mEiEnvyhLXt-DvCFFrb_fPFzgXY-NjG39wd5f_Aog |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1080_10962247_2013_791349 crossref_primary_10_1016_j_energy_2024_132677 crossref_primary_10_1016_j_envint_2022_107640 crossref_primary_10_1080_10937404_2016_1175981 crossref_primary_10_5194_acp_21_14833_2021 crossref_primary_10_1186_s12302_024_00919_4 crossref_primary_10_1039_D3EM00554B crossref_primary_10_1016_j_cplett_2011_07_023 crossref_primary_10_1021_acs_est_2c01826 crossref_primary_10_1007_s10973_021_10863_7 crossref_primary_10_1016_j_envpol_2017_03_049 crossref_primary_10_1021_es2034608 crossref_primary_10_3390_en17071556 crossref_primary_10_1021_acsearthspacechem_3c00013 crossref_primary_10_1016_j_seta_2022_101989 crossref_primary_10_1016_j_ecmx_2021_100095 crossref_primary_10_1021_acs_est_3c08822 crossref_primary_10_1007_s10973_022_11485_3 crossref_primary_10_1002_ange_202208420 crossref_primary_10_1016_j_energy_2021_120564 crossref_primary_10_1016_j_applthermaleng_2013_05_028 crossref_primary_10_1029_2020GL087535 crossref_primary_10_1016_j_applthermaleng_2013_09_009 crossref_primary_10_1021_acs_est_5b01970 crossref_primary_10_1021_jp108647p crossref_primary_10_1021_acs_chemrev_9b00719 crossref_primary_10_1016_j_jcat_2018_04_014 crossref_primary_10_1016_j_chemosphere_2021_131208 crossref_primary_10_1016_j_energy_2018_04_137 crossref_primary_10_1016_j_est_2022_106443 crossref_primary_10_1016_j_mcat_2023_113314 crossref_primary_10_1016_j_atmosenv_2018_11_060 crossref_primary_10_1002_etc_1925 crossref_primary_10_1177_0954408919881236 crossref_primary_10_1002_cbdv_201900424 crossref_primary_10_1016_j_scitotenv_2018_10_443 crossref_primary_10_1016_j_jenvman_2017_06_010 crossref_primary_10_1002_etc_5963 crossref_primary_10_1016_j_chroma_2017_09_049 crossref_primary_10_1016_j_egyr_2022_05_233 crossref_primary_10_1016_j_chemosphere_2014_06_092 crossref_primary_10_1016_j_jct_2020_106222 crossref_primary_10_1021_acs_orglett_4c03274 crossref_primary_10_1021_jp110021u crossref_primary_10_1021_acs_jpca_7b04086 crossref_primary_10_1021_acsearthspacechem_0c00355 crossref_primary_10_1016_j_csite_2024_105556 crossref_primary_10_1021_es5032147 crossref_primary_10_1016_j_spc_2023_06_016 crossref_primary_10_1016_j_jct_2015_05_009 crossref_primary_10_1002_ep_10465 crossref_primary_10_1016_j_molstruc_2023_135506 crossref_primary_10_1039_D4VA00298A crossref_primary_10_1016_j_scitotenv_2024_170137 crossref_primary_10_1016_j_cattod_2016_11_017 crossref_primary_10_1016_j_energy_2022_126131 crossref_primary_10_1016_j_cej_2020_124946 crossref_primary_10_3390_su16062382 crossref_primary_10_1007_s11027_011_9281_2 crossref_primary_10_1016_j_apcatb_2014_09_076 crossref_primary_10_1039_D3EA00102D crossref_primary_10_1016_j_fluid_2016_07_031 crossref_primary_10_1039_D0NJ01757D crossref_primary_10_2139_ssrn_4162937 crossref_primary_10_1016_j_atmosenv_2022_119467 crossref_primary_10_1039_D3CC04985J crossref_primary_10_1021_acs_est_0c02910 crossref_primary_10_1016_j_chemosphere_2014_09_033 crossref_primary_10_1016_j_crci_2018_04_006 crossref_primary_10_1021_acs_jpca_9b00300 crossref_primary_10_1016_j_jcp_2014_04_007 crossref_primary_10_1016_j_atmosenv_2018_02_018 crossref_primary_10_1021_acs_estlett_4c00525 crossref_primary_10_1007_s43630_024_00577_8 crossref_primary_10_1021_es902124u crossref_primary_10_1016_j_ijrefrig_2015_06_010 crossref_primary_10_1016_j_ijrefrig_2018_04_009 crossref_primary_10_1039_c0pp90039g crossref_primary_10_1016_j_jcp_2013_08_027 crossref_primary_10_3390_atmos14030501 crossref_primary_10_1002_2014JD022058 crossref_primary_10_1016_j_apcatb_2019_117939 crossref_primary_10_1039_c8pp90064g crossref_primary_10_1016_j_lwt_2017_05_027 crossref_primary_10_1021_acs_est_7b05960 crossref_primary_10_1115_1_4065870 crossref_primary_10_1021_es4050264 crossref_primary_10_1002_anie_202208420 crossref_primary_10_1039_D1EM00306B crossref_primary_10_1080_01694243_2024_2417777 crossref_primary_10_1016_j_icheatmasstransfer_2024_108357 crossref_primary_10_1007_s10973_019_09224_2 |
Cites_doi | 10.1016/j.envpol.2003.12.017 10.1021/es9908523 10.1021/es047975u 10.1115/1.2128636 10.1021/j100093a029 10.1021/es9913683 10.1029/97JD02988 10.1016/j.atmosenv.2007.11.009 10.1039/B714382F 10.1021/es0101532 10.1021/es00005a007 10.1073/pnas.0902817106 10.1016/j.cplett.2007.03.053 10.1016/j.atmosenv.2007.08.044 10.1021/es980674y 10.1021/es901864s 10.1002/etc.5620180533 10.1021/ja01149a122 10.1029/95JD01919 10.1021/es050118l 10.1016/j.cplett.2007.11.051 10.1021/es011156h 10.1080/10807039991289644 10.1021/es980697c 10.1021/es991435t 10.1021/es061403n 10.1021/jp036343b 10.1021/es990855f |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Chemical Society Jan 1, 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Jan 1, 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7TG 7TV F1W H97 KL. L.G |
DOI | 10.1021/es902481f |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Pollution Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 348 |
ExternalDocumentID | 1936758761 19994849 22362005 10_1021_es902481f h69381087 |
Genre | Journal Article Feature |
GeographicLocations | North America America United States--US USA |
GeographicLocations_xml | – name: North America – name: United States--US – name: USA |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ AAYOK CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7TG 7TV F1W H97 KL. L.G |
ID | FETCH-LOGICAL-a469t-94d600784e6cbb1aab816cff37fa425b741ab8f8d6b080ed221bf04d8fda795c3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Fri Sep 05 12:59:31 EDT 2025 Mon Jul 21 09:53:37 EDT 2025 Fri Jul 25 08:37:13 EDT 2025 Wed Feb 19 01:47:01 EST 2025 Mon Jul 21 09:16:51 EDT 2025 Wed Oct 01 02:52:37 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Air conditioning Current source Atmospheric fallout Pollutant behavior Regional scope Troposphere Ozone Air quality Wet deposition Pollutant emission Modeling Dry deposition Persistence Transport process Lifetime Three dimensional model Rain Efficiency Greenhouse gas Air pollution Anthropogenic factor |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a469t-94d600784e6cbb1aab816cff37fa425b741ab8f8d6b080ed221bf04d8fda795c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19994849 |
PQID | 230179345 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_754542992 proquest_miscellaneous_733807357 proquest_journals_230179345 pubmed_primary_19994849 pascalfrancis_primary_22362005 crossref_primary_10_1021_es902481f crossref_citationtrail_10_1021_es902481f acs_journals_10_1021_es902481f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Scott B. F. (ref20/cit20) 2005; 39 Berg M. (ref14/cit14) 2000; 34 Appel K. W. (ref38/cit38) 2007; 41 Scott B. F. (ref18/cit18) 2002; 36 Byun D. (ref27/cit27) 2006; 59 Papasavva S. T. (ref5/cit5) 2009 Wujcik C. E. (ref19/cit19) 1999; 33 von Sydow L. M. (ref15/cit15) 2000; 34 Scott B. F. (ref11/cit11) 2005; 39 (ref3/cit3) 1997 Cahill T. M. (ref16/cit16) 2000; 34 Nielsen O. J. (ref29/cit29) 2007; 439 Jordan A. (ref21/cit21) 1999; 33 Frank H. (ref22/cit22) 2002; 36 Arp H. P. H. (ref39/cit39) 2009; 43 Henne A. L. (ref10/cit10) 1951; 73 George C. (ref31/cit31) 1994; 98 Velders G. J. M. (ref2/cit2) 2009; 106 ref28/cit28 Rompp A. (ref12/cit12) 2001; 35 (ref1/cit1) 2007 Hurley M. D. (ref8/cit8) 2008; 450 Hanson M. L. (ref23/cit23) 2004; 130 ref35/cit35 Scott B. F. (ref13/cit13) 2006; 40 Kutsuna S. (ref33/cit33) 2008; 42 (ref41/cit41) 2005 Papasavva S. T. (ref26/cit26) 2009 de Bruyn W. J. (ref32/cit32) 1995; 29 Boutonnet J. C. (ref9/cit9) 1999; 5 Kanakidou M. (ref24/cit24) 1995; 100 (ref7/cit7) 2009 Papadimitriou V. C. (ref6/cit6) 2008; 10 ref4/cit4 Scott B. F. (ref17/cit17) 2000; 34 ref30/cit30 Kotamarthi V. R. (ref25/cit25) 1998; 103 Hurley M. D. (ref34/cit34) 2004; 108 Berends A. G. (ref40/cit40) 1999; 18 |
References_xml | – volume: 130 start-page: 385 year: 2004 ident: ref23/cit23 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.12.017 – volume: 34 start-page: 4266 issue: 20 year: 2000 ident: ref17/cit17 publication-title: Environ. Sci. Technol. doi: 10.1021/es9908523 – year: 2009 ident: ref26/cit26 publication-title: Environ. Sci. Technol. – volume: 39 start-page: 6555 issue: 17 year: 2005 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es047975u – volume: 59 start-page: 51 issue: 2 year: 2006 ident: ref27/cit27 publication-title: Appl. Mech. Rev. doi: 10.1115/1.2128636 – volume-title: Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons year: 2005 ident: ref41/cit41 – year: 2009 ident: ref5/cit5 publication-title: Environ. Prog. Sustain. Ener. J. – volume: 98 start-page: 10857 issue: 42 year: 1994 ident: ref31/cit31 publication-title: J. Phys. Chem. doi: 10.1021/j100093a029 – ident: ref4/cit4 – volume: 34 start-page: 3115 issue: 15 year: 2000 ident: ref15/cit15 publication-title: Environ. Sci. Technol. doi: 10.1021/es9913683 – volume: 103 start-page: 5747 issue: 5 year: 1998 ident: ref25/cit25 publication-title: J. Geophys. Res. doi: 10.1029/97JD02988 – volume-title: Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50 year: 2007 ident: ref1/cit1 – volume: 42 start-page: 1399 year: 2008 ident: ref33/cit33 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.11.009 – volume-title: U.S. Environmental Protection Agency year: 2009 ident: ref7/cit7 – ident: ref35/cit35 – volume: 10 start-page: 808 year: 2008 ident: ref6/cit6 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B714382F – volume-title: Kyoto Protocol to the United Nations Framework Convention on Climate Change year: 1997 ident: ref3/cit3 – volume: 36 start-page: 12 issue: 1 year: 2002 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es0101532 – volume: 29 start-page: 1179 issue: 5 year: 1995 ident: ref32/cit32 publication-title: Environ. Sci. Technol. doi: 10.1021/es00005a007 – volume: 106 start-page: 10949 year: 2009 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0902817106 – volume: 35 start-page: 1294 issue: 7 year: 2001 ident: ref12/cit12 publication-title: Environ. Sci. Technol. – volume: 439 start-page: 18 year: 2007 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.03.053 – volume: 41 start-page: 9603 year: 2007 ident: ref38/cit38 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.08.044 – volume: 33 start-page: 522 issue: 4 year: 1999 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es980674y – ident: ref28/cit28 – volume: 43 start-page: 8542 year: 2009 ident: ref39/cit39 publication-title: Environ. Sci. Technol. doi: 10.1021/es901864s – volume: 18 start-page: 1053 issue: 5 year: 1999 ident: ref40/cit40 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620180533 – volume: 73 start-page: 2323 issue: 5 year: 1951 ident: ref10/cit10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01149a122 – volume: 100 start-page: 18781 issue: 9 year: 1995 ident: ref24/cit24 publication-title: J. Geophys. Res. doi: 10.1029/95JD01919 – volume: 39 start-page: 8664 issue: 22 year: 2005 ident: ref11/cit11 publication-title: Environ. Sci. Technol. doi: 10.1021/es050118l – volume: 450 start-page: 263 year: 2008 ident: ref8/cit8 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.11.051 – volume: 36 start-page: 1893 issue: 9 year: 2002 ident: ref18/cit18 publication-title: Environ. Sci. Technol. doi: 10.1021/es011156h – volume: 5 start-page: 59 issue: 1 year: 1999 ident: ref9/cit9 publication-title: Human Ecol. Risk Assess.: Int. J. doi: 10.1080/10807039991289644 – volume: 33 start-page: 1747 issue: 10 year: 1999 ident: ref19/cit19 publication-title: Environ. Sci. Technol. doi: 10.1021/es980697c – volume: 34 start-page: 2909 issue: 14 year: 2000 ident: ref16/cit16 publication-title: Environ. Sci. Technol. doi: 10.1021/es991435t – volume: 40 start-page: 7167 issue: 23 year: 2006 ident: ref13/cit13 publication-title: Environ. Sci. Technol. doi: 10.1021/es061403n – volume: 108 start-page: 615 issue: 4 year: 2004 ident: ref34/cit34 publication-title: J. Phys. Chem. A doi: 10.1021/jp036343b – volume: 34 start-page: 2675 issue: 13 year: 2000 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es990855f – ident: ref30/cit30 |
SSID | ssj0002308 |
Score | 2.338325 |
Snippet | We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 343 |
SubjectTerms | Air Pollutants - chemistry Applied sciences Aquatic life Biodegradation Emissions Environmental impact Environmental Modeling Exact sciences and technology Fluorocarbons - chemistry Gases - chemistry Greenhouse Effect Greenhouse gases Models, Theoretical North America Outdoor air quality Ozone Ozone - chemistry Pollution Rain Simulation Trifluoroacetic Acid - chemistry |
Title | Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement |
URI | http://dx.doi.org/10.1021/es902481f https://www.ncbi.nlm.nih.gov/pubmed/19994849 https://www.proquest.com/docview/230179345 https://www.proquest.com/docview/733807357 https://www.proquest.com/docview/754542992 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002308 issn: 0013-936X databaseCode: ACS dateStart: 19670101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgGhAoXSpbCygEOR6tIkXsc5rtouCxIUia20t8iPWCCqZLXJHuhP4Fczk9e2oi3KLZkkfow9nz3jbwDeOaGcEVZxidacCy0M19ZrLm1kHZovETvy6H75Kqfn4vN8NN-At7d48MPgQ1YmxLsV-HtwP5QqoBXW-Ph7P90ihlZdmoIkkvOOPujqq2R6bHnN9Dxa6BJbwTfpK27Hl7WdmTyGk-60ThNe8utwVZlDe_kveeNdVXgCWy3OZONGMZ7CRpZvw8Mr7IPbsHO6PuSGou0oL5_Bn7PLIs-Yzh2bTcbsU32QsmQ_c1Z7eVjr5WF0NIWdENtEk5iJFZ6FBxFdfJZVS-0vVsWyWNB-P35vfzo542jCxG___oCN2beiolAl_HUd_POjWJUZ-6hLhosC2tyncj2H88np7HjK25wNXONCu-KJcMR4r0QmrTGB1kYF0nofxV7j9GAQwOAtr5w0iFUzF4aB8UfCKe90nIxstAObOdZxF1gcSq0SLZNQeuHQjlqK2TEJQrYjj-IDGGKnpu2YK9PanR4Gad_aA9jv-ju1LeM5Jd64uEn0TS-6aGg-bhIaXlOaXhIhlqTduQHsdVq0LhbqJ02CAp-y_imOYXLM6DzDtk3jiGj_o1F8hwgiXYIO4QBeNOq5LidifKFE8vJ_7bEHD5rYB9pAegWb1XKVvUZIVZlhPaT-Av4sGQg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOQBCPAqFUAgrxKFI3VLbm7V9jEpDCn0gkUq5WfsUVSs7yjoH-hP41cysHadF5aHc7LEzHs_ufN6Z_YaQd4ZnRnGdMQHRnHHJFZPaSSZ0og2EL54azOgeHYvxKf88HUxbmhzcCwNKeLiTD0n8FbtA9MH6HOm3Ineb3AkMKAiD9r51sy5A6WzZrSBPxHTJInT1UoxA2l-LQA9m0oMxXNPF4s8wM4Sb0aOmb1FQNFSZnO8sarWjL3_jcPy_J3lMHraokw4bN3lCbtlyndy_wkW4Tjb2V1veQLQd8_4p-XlyWZWWytLQyWhID8K2Sk_PShpyPrTN-VDcqEI_IvdE06aJVo7G2wn-2MTWc-kuFtW8muHqP9xvazw6YRDQ-A_3fpsO6deqxsIl-OtQCvS9WnhLP0lP4RMBl_pRr2fkdLQ_2RuztoMDk_DZXbOcG-S_z7gVWqlISpVFQjuXpE7CZKEAzsAhlxmhALlaE8eRcrvcZM7INB_oZIOslfCMLwhNYyGzXIo8Fo4biKoaK3hUDgBu14F4j_TB2EU7An0RkutxVHTW7pGt5WsvdMt_jm04Lm4SfduJzhrSj5uE-td8p5MEwCVwra5HNpfOtFIL3BSnRA5naXcWRjSmaWRpwbZFmmATgGSQ_kUEcC8CibhHnjdeutITED_PeP7yX_Z4Q-6OJ0eHxeHB8ZdNcq-pisClpVdkrZ4v7GsAW7Xqh1H2CxKNIXM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVkIgVKBQSAthhTgUqS61vVnbx6itSXk0lUil3Kx9eAWisqOsc6A_gV_NjO04LSoP5RZPnPF6ZufbndlvAN4YHhvFdewJjOYel1x5UlvpCR1qg-GLR4Yyup_PxOiCf5gOpu1Ckc7CoBIO7-TqJD559czYlmHAf5e7hCi4fHsHNgZE_UZQ6OhLN_MinI6XHQuSUEyXTELXf0pRSLsbUejBTDocENt0svgz1KxDTvoQxp2ydaXJ94NFpQ701W88jv__NI9gs0WfbNiYy2NYy4stuH-Nk3ALtk9WR99QtPV99wR-jq_KImeyMGySDtlpfbzSsW8Fq3M_rM39MDqwwo6Jg6Jp18RKy4L9kD7eJK_m0l4uynk5oywA3m9vlI49DGz8h327z4bsvKyogAn_ui4J-louXM7eS8dwqUBb_qTXU7hITyZHI6_t5OBJXH5XXsIN8eDHPBdaKV9KFftCWxtGVuKkoRDW4Fc2NkIhgs1NEPjKHnITWyOjZKDDbVgv8BmfA4sCIeNEiiQQlhuMrpoqeVSCQO7QongP-jjgWeuJLquT7IGfdaPdg73lq890y4NO7TgubxN93YnOGvKP24T6N-ynk0TgJWjPrge7S4NaqYWmSlMjx6usu4qeTekaWeQ4tlkUUjOAcBD9RQTxLwGKoAfPGktd6YnIn8c82fnXeLyCu-fHafbp9OzjLtxriiNoh-kFrFfzRf4SMVel-rWj_QJZViPt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ozone+and+TFA+Impacts+in+North+America+from+Degradation+of+2%2C3%2C3%2C3-Tetrafluoropropene+%28HFO-1234yf%29%2C+A+Potential+Greenhouse+Gas+Replacement&rft.jtitle=Environmental+science+%26+technology&rft.au=Luecken%2C+Deborah+J&rft.au=Waterland%2C+Robert+L&rft.au=Papasavva%2C+Stella&rft.au=Taddonio%2C+Kristen+N&rft.date=2010-01-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=44&rft.issue=1&rft.spage=343&rft.epage=348&rft_id=info:doi/10.1021%2Fes902481f&rft.externalDocID=h69381087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |