Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement
We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less tha...
Saved in:
Published in | Environmental science & technology Vol. 44; no. 1; pp. 343 - 348 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.01.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 |
DOI | 10.1021/es902481f |
Cover
Summary: | We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf’s short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km−2, substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L−1, a level that is 80× lower than the lowest level considered safe for the most sensitive aquatic organisms. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es902481f |