Unsupervised Machine Learning Neural Gas Algorithm for Accurate Evaluations of the Hessian Matrix in Molecular Dynamics

The Hessian matrix of the potential energy of molecular systems is employed not only in geometry optimizations or high-order molecular dynamics integrators but also in many other molecular procedures, such as instantaneous normal mode analysis, force field construction, instanton calculations, and s...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 17; no. 11; pp. 6733 - 6746
Main Authors Gandolfi, Michele, Ceotto, Michele
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.11.2021
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.1c00707

Cover

More Information
Summary:The Hessian matrix of the potential energy of molecular systems is employed not only in geometry optimizations or high-order molecular dynamics integrators but also in many other molecular procedures, such as instantaneous normal mode analysis, force field construction, instanton calculations, and semiclassical initial value representation molecular dynamics, to name a few. Here, we present an algorithm for the calculation of the approximated Hessian in molecular dynamics. The algorithm belongs to the family of unsupervised machine learning methods, and it is based on the neural gas idea, where neurons are molecular configurations whose Hessians are adopted for groups of molecular dynamics configurations with similar geometries. The method is tested on several molecular systems of different dimensionalities both in terms of accuracy and computational time versus calculating the Hessian matrix at each time-step, that is, without any approximation, and other Hessian approximation schemes. Finally, the method is applied to the on-the-fly, full-dimensional simulation of a small synthetic peptide (the 46 atom N-acetyl-l-phenylalaninyl-l-methionine amide) at the level of DFT-B3LYP-D/6-31G* theory, from which the semiclassical vibrational power spectrum is calculated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1549-9618
1549-9626
1549-9626
DOI:10.1021/acs.jctc.1c00707