Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging

Fourier transform infrared (FT-IR) microscopy coupled with machine learning approaches has been demonstrated to be a powerful technique for identifying abnormalities in human tissue. The ability to objectively identify the prediseased state and diagnose cancer with high levels of accuracy has the po...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 89; no. 14; pp. 7348 - 7355
Main Authors Pilling, Michael J, Henderson, Alex, Gardner, Peter
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.07.2017
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.7b00426

Cover

More Information
Summary:Fourier transform infrared (FT-IR) microscopy coupled with machine learning approaches has been demonstrated to be a powerful technique for identifying abnormalities in human tissue. The ability to objectively identify the prediseased state and diagnose cancer with high levels of accuracy has the potential to revolutionize current histopathological practice. Despite recent technological advances in FT-IR microscopy, sample throughput and speed of acquisition are key barriers to clinical translation. Wide-field quantum cascade laser (QCL) infrared imaging systems with large focal plane array detectors utilizing discrete frequency imaging have demonstrated that large tissue microarrays (TMA) can be imaged in a matter of minutes. However, this ground breaking technology is still in its infancy, and its applicability for routine disease diagnosis is, as yet, unproven. In light of this, we report on a large study utilizing a breast cancer TMA comprised of 207 different patients. We show that by using QCL imaging with continuous spectra acquired between 912 and 1800 cm–1, we can accurately differentiate between 4 different histological classes. We demonstrate that we can discriminate between malignant and nonmalignant stroma spectra with high sensitivity (93.56%) and specificity (85.64%) for an independent test set. Finally, we classify each core in the TMA and achieve high diagnostic accuracy on a patient basis with 100% sensitivity and 86.67% specificity. The absence of false negatives reported here opens up the possibility of utilizing high throughput chemical imaging for cancer screening, thereby reducing pathologist workload and improving patient care.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.7b00426