Singlet Exciton Fission in Polycrystalline Thin Films of a Slip-Stacked Perylenediimide
The crystal structure of N,N-bis(n-octyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide), 1, obtained by X-ray diffraction reveals that 1 has a nearly planar perylene core and π–π stacks at a 3.5 Å interplanar distance in well-separated slip-stacked columns. Theory predicts that slip-stack...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 39; pp. 14701 - 14712 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
02.10.2013
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/ja4053174 |
Cover
Summary: | The crystal structure of N,N-bis(n-octyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide), 1, obtained by X-ray diffraction reveals that 1 has a nearly planar perylene core and π–π stacks at a 3.5 Å interplanar distance in well-separated slip-stacked columns. Theory predicts that slip-stacked, π–π-stacked structures should enhance interchromophore electronic coupling and thus favor singlet exciton fission. Photoexcitation of vapor-deposited polycrystalline 188 nm thick films of 1 results in a 140 ± 20% yield of triplet excitons (3* 1) in τSF = 180 ± 10 ps. These results illustrate a design strategy for producing perylenediimide and related rylene derivatives that have the optimized interchromophore electronic interactions which promote high-yield singlet exciton fission for potentially enhancing organic solar cell performance and charge separation in systems for artificial photosynthesis. |
---|---|
Bibliography: | National Science Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/ja4053174 |