Alkane/Water Partition Coefficient Calculation Based on the Modified AM1 Method and Internal Hydrogen Bonding Sampling Using COSMO-RS
We introduce a physics-based model for calculating partition coefficients of solutes between water and alkanes, using a combination of a semi-empirical method for COSMO charge density calculation and statistical sampling of internal hydrogen bonds (IHBs). We validate the model on the experimental pa...
Saved in:
| Published in | Journal of chemical information and modeling Vol. 61; no. 7; pp. 3453 - 3462 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
American Chemical Society
26.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9596 1549-960X 1549-960X |
| DOI | 10.1021/acs.jcim.0c01478 |
Cover
| Summary: | We introduce a physics-based model for calculating partition coefficients of solutes between water and alkanes, using a combination of a semi-empirical method for COSMO charge density calculation and statistical sampling of internal hydrogen bonds (IHBs). We validate the model on the experimental partition data (∼3500 molecules) of small organics, drug-like molecules, and statistical assessment of modeling of proteins and ligand drugs. The model combines two novel algorithms: a bond-correction method for improving the calculation of COSMO charge density from AM1 calculations and a sampling method to deal with IHBs. From a comparison of simulated and experimental partition coefficients, we find a root-mean-square deviation of roughly one log 10 unit. From IHB analysis, we know that IHBs can be present in two states: open (in water) and closed (in apolar solvent). The difference can lead to a shift of as much as two log 10 units per IHB; not taking this effect into account can lead to substantial errors. The method takes a few minutes of calculation time on a single core, per molecule. Although this is still much slower than quantitative structure–activity relationship, it is much faster than molecular simulations and can be readily incorporated into any screening method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1549-9596 1549-960X 1549-960X |
| DOI: | 10.1021/acs.jcim.0c01478 |