Highly Enantioselective Radical Cation [2 + 2] and [4 + 2] Cycloadditions by Chiral Iron(III) Photoredox Catalysis
Radical cations show a unique reactivity that is fundamentally different from that of conventional cations and have thus attracted considerable attention as alternative cationic intermediates for novel types of organic reactions. However, asymmetric catalysis to promote enantioselective radical cati...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 28; pp. 15054 - 15060 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
19.07.2023
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.3c04010 |
Cover
Summary: | Radical cations show a unique reactivity that is fundamentally different from that of conventional cations and have thus attracted considerable attention as alternative cationic intermediates for novel types of organic reactions. However, asymmetric catalysis to promote enantioselective radical cation reactions remains a major challenge in contemporary organic synthesis. Here, we report that the judicious design of an ion pair consisting of a radical cation and a chiral counteranion induces an excellent level of enantioselectivity. This strategy was applied to enantio-, diastereo-, and regioselective [2 + 2] cycloadditions, as well as enantio-, diastereo-, and regioselective [4 + 2] cycloadditions, by using chiral iron(III) photoredox catalysis. We anticipate that this strategy has the potential to expand the use of several mature chiral anions to develop numerous unprecedented enantioselective radical cation reactions. |
---|---|
Bibliography: | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.3c04010 |