Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG

Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference) Vol. 2016; p. 875
Main Authors Natarajan, Annamalai, Angarita, Gustavo, Gaiser, Edward, Malison, Robert, Ganesan, Deepak, Marlin, Benjamin M
Format Journal Article Conference Proceeding
LanguageEnglish
Published United States 01.09.2016
Subjects
Online AccessGet full text
DOI10.1145/2971648.2971666

Cover

More Information
Summary:Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data.
DOI:10.1145/2971648.2971666