Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines
One of the main challenges in the development of vaccine has been to improve their stability at room temperature and eliminate the limitations associated with the cold chain storage. In this paper, we describe the development and optimization of thermostable nanocarriers consisting of an oily core w...
Saved in:
Published in | Molecular pharmaceutics Vol. 15; no. 12; pp. 5653 - 5664 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1543-8384 1543-8392 1543-8392 |
DOI | 10.1021/acs.molpharmaceut.8b00852 |
Cover
Summary: | One of the main challenges in the development of vaccine has been to improve their stability at room temperature and eliminate the limitations associated with the cold chain storage. In this paper, we describe the development and optimization of thermostable nanocarriers consisting of an oily core with immunostimulating activity, containing squalene or α tocopherol surrounded by a protamine shell. The results showed that these nanocapsules can efficiently associate the recombinant hepatitis B surface antigen (rHBsAg) without compromising its antigenicity. Furthermore, the freeze-dried protamine nanocapsules were able to preserve the integrity and bioactivity of the associated antigen upon storage for at least 12 months at room temperature. In vitro studies evidenced the high internalization of the nanocapsules by immunocompetent cells, followed by cytokine secretion and complement activation. In vivo studies showed the capacity of rHBsAg-loaded nanocapsules to elicit protective levels upon intramuscular or intranasal administration to mice. Overall, our data indicate that protamine nanocapsules are an innovative thermostable nanovaccine platform for improved antigen delivery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1543-8384 1543-8392 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.8b00852 |