The limit of reciprocal sum of some subsequential Fibonacci numbers
This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a...
        Saved in:
      
    
          | Published in | AIMS mathematics Vol. 6; no. 11; pp. 12379 - 12394 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            AIMS Press
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2473-6988 2473-6988  | 
| DOI | 10.3934/math.2021716 | 
Cover
| Summary: | This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove
<disp-formula> <tex-math id="FE1"> \begin{document}$ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $\end{document} </tex-math></disp-formula>
And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $. | 
|---|---|
| ISSN: | 2473-6988 2473-6988  | 
| DOI: | 10.3934/math.2021716 |