Construction of blocked designs with multi block variables

When experimental units are inhomogeneous, blocking the experimental units into categories is crucial so as to estimate the treatment effects precisely. In practice, the inhomogeneity often comes from different sources known as block variables in design terminology. The paper considers the blocking...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 6; pp. 6293 - 6308
Main Author Zhao, Yuna
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021369

Cover

More Information
Summary:When experimental units are inhomogeneous, blocking the experimental units into categories is crucial so as to estimate the treatment effects precisely. In practice, the inhomogeneity often comes from different sources known as block variables in design terminology. The paper considers the blocking problems with multi block variables. The construction methods of the optimal blocked regular $ 2^{n-m} $ designs with multi block variables under the general minimum lower order confounding criterion for $ \frac{5N}{16}+1\leq n \leq N-1 $ are provided, where $ N = 2^{n-m} $.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021369