Cylindrical FDTD Analysis of LWD Tools Through Anisotropic Dipping-Layered Earth Media

Electrical logging-while-drilling (LWD) tools are commonly used in oil and gas exploration to estimate the conductivity (resistivity) of adjacent Earth media. In general, Earth media exhibit anisotropic conductivities. This implies that when LWD tools are used for deviated and horizontal drilling, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 45; no. 2; pp. 383 - 388
Main Authors Hwa Ok Lee, Teixeira, F.L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2006.888139

Cover

More Information
Summary:Electrical logging-while-drilling (LWD) tools are commonly used in oil and gas exploration to estimate the conductivity (resistivity) of adjacent Earth media. In general, Earth media exhibit anisotropic conductivities. This implies that when LWD tools are used for deviated and horizontal drilling, the resulting borehole problem may include dipping-layered media with dipping beds having full 3 times 3 conductivity tensors. To model this problem, we describe a 3-D cylindrical finite-difference time-domain (FDTD) algorithm extended to fully anisotropic conductive media and implemented with cylindrical perfectly matched layers to mimic open-domain problems. The 3-D FDTD algorithm is validated against analytical results in simple formations, showing good agreement, and used to simulate the response of LWD tools through anisotropic dipping beds for various values of anisotropic conductivities and dipping angles
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.888139