Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading

Intermediate filaments (IFs) are part of the cytoskeleton of eukaryotic cells and, therefore, are largely responsible for the cell’s mechanical properties. IFs are characterized by a pronounced extensibility and remarkable resilience that enable them to support cells in extreme situations. Previous...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 19; no. 10; pp. 7349 - 7356
Main Authors Forsting, Johanna, Kraxner, Julia, Witt, Hannes, Janshoff, Andreas, Köster, Sarah
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.10.2019
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.9b02972

Cover

More Information
Summary:Intermediate filaments (IFs) are part of the cytoskeleton of eukaryotic cells and, therefore, are largely responsible for the cell’s mechanical properties. IFs are characterized by a pronounced extensibility and remarkable resilience that enable them to support cells in extreme situations. Previous experiments showed that, under strain, α-helices in vimentin IFs might unfold to β-sheets. Upon repeated stretching, the filaments soften; however, the remaining plastic strain is negligible. Here, we observe that vimentin IFs do not recover their original stiffness on reasonable time scales, and we explain these seemingly contradicting results by introducing a third, less well-defined conformational state. Reversibility on the nanoscale can be fully rescued by introducing cross-linkers that prevent transition to the β-sheet. Our results classify IFs as a nanomaterial with intriguing mechanical properties, which is likely to play a major role for the cell’s local adaption to external stimuli.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.9b02972