Surface-Induced Chain Alignment of Semiflexible Polymers
Semiflexible polymers tend to spontaneously align parallel to an impenetrable surface, creating a mean aligning field. The backbone segments interact with the aligning field, further enhancing the chain alignment. Using molecular dynamics (MD) simulations of bead–spring chains, we demonstrate that t...
Saved in:
Published in | Macromolecules Vol. 49; no. 3; pp. 963 - 971 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0024-9297 1520-5835 1520-5835 |
DOI | 10.1021/acs.macromol.5b02173 |
Cover
Summary: | Semiflexible polymers tend to spontaneously align parallel to an impenetrable surface, creating a mean aligning field. The backbone segments interact with the aligning field, further enhancing the chain alignment. Using molecular dynamics (MD) simulations of bead–spring chains, we demonstrate that the thickness of the aligned layer is about a persistence length L p for semiflexible polymers in the isotropic phase. To investigate the effect of nematic coupling on the surface-induced alignment, we develop a lattice version of self-consistent field theory (SCFT) for semiflexible chains. We predict that the strength and range of the alignment increase with increasing nematic coupling, quantified by the nematic coupling constant α. The impenetrable surface acts as a perturbation on the chain alignment, and the nematic coupling α amplifies the perturbation. By comparing the SCFT predicted order parameter profile for chains near an impenetrable surface to MD simulations, we can estimate α for semiflexible polymers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0024-9297 1520-5835 1520-5835 |
DOI: | 10.1021/acs.macromol.5b02173 |