Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping

Regarding the ever increasing issue of water scarcity in different countries, the current study plans to apply support vector machine (SVM), random forest (RF), and genetic algorithm optimized random forest (RFGA) methods to assess groundwater potential by spring locations. To this end, 14 effective...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 31; no. 9; pp. 2761 - 2775
Main Authors Naghibi, Seyed Amir, Ahmadi, Kourosh, Daneshi, Alireza
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-017-1660-3

Cover

More Information
Summary:Regarding the ever increasing issue of water scarcity in different countries, the current study plans to apply support vector machine (SVM), random forest (RF), and genetic algorithm optimized random forest (RFGA) methods to assess groundwater potential by spring locations. To this end, 14 effective variables including DEM-derived, river-based, fault-based, land use, and lithology factors were provided. Of 842 spring locations found, 70% (589) were implemented for model training, and the rest of them were used to evaluate the models. The mentioned models were run and groundwater potential maps (GPMs) were produced. At last, receiver operating characteristics (ROC) curve was plotted to evaluate the efficiency of the methods. The results of the current study denoted that RFGA, and RF methods had better efficacy than different kernels of SVM model. Area under curve (AUC) of ROC value for RF and RFGA was estimated as 84.6, and 85.6%, respectively. AUC of ROC was computed as SVM- linear (78.6%), SVM-polynomial (76.8%), SVM-sigmoid (77.1%), and SVM- radial based function (77%). Furthermore, the results represented higher importance of altitude, TWI, and slope angle in groundwater assessment. The methodology created in the current study could be transferred to other places with water scarcity issues for groundwater potential assessment and management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-017-1660-3