Dimensions of the hull of generalized Reed-Solomon codes
Let GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon}) $ be a $ k $-dimensional generalized Reed-Solomon (GRS) code over $ \mathbb{F}_q $ associated with $ \boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) $ and $ \boldsymbol{\upsilon} = (\upsilon_1, \ldots, \upsilon_n) $. In this paper, we determ...
        Saved in:
      
    
          | Published in | AIMS mathematics Vol. 9; no. 6; pp. 13553 - 13569 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            AIMS Press
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2473-6988 2473-6988  | 
| DOI | 10.3934/math.2024661 | 
Cover
| Summary: | Let GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon}) $ be a $ k $-dimensional generalized Reed-Solomon (GRS) code over $ \mathbb{F}_q $ associated with $ \boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) $ and $ \boldsymbol{\upsilon} = (\upsilon_1, \ldots, \upsilon_n) $. In this paper, we determined the dimension of the Euclidean hull GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})\; \cap $ GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})^\bot $, which addresses an open problem posed in [Chen et al., IEEE-TIT, 2023]. We also presentd a new approach to generating all self-dual RS codes. | 
|---|---|
| ISSN: | 2473-6988 2473-6988  | 
| DOI: | 10.3934/math.2024661 |