A robust regional eigenvalue assignment problem using rank-one control for undamped gyroscopic systems
Considering the advantages of economic benefit and cost reduction by using rank-one control, we investigated the problem of robust regional eigenvalue assignment using rank-one control for undamped gyroscopic systems. Based on the orthogonality relation, we presented a method for solving partial eig...
Saved in:
| Published in | AIMS mathematics Vol. 9; no. 7; pp. 19104 - 19124 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2024931 |
Cover
| Summary: | Considering the advantages of economic benefit and cost reduction by using rank-one control, we investigated the problem of robust regional eigenvalue assignment using rank-one control for undamped gyroscopic systems. Based on the orthogonality relation, we presented a method for solving partial eigenvalue assignment problems to reassign partial undesired eigenvalues accurately. Since it is difficult to achieve robust control by assigning desired eigenvalues to precise positions with rank-one control, we assigned eigenvalues within specified regions to provide the necessary freedom. According to the sensitivity analysis theories, we derived the sensitivity of closed-loop eigenvalues to parameter perturbations to measure robustness and proposed a numerical algorithm for solving robust regional eigenvalue assignment problems so that the closed-loop eigenvalues were insensitive to parameter perturbations. Numerical experiments demonstrated the effectiveness of our method. |
|---|---|
| ISSN: | 2473-6988 2473-6988 |
| DOI: | 10.3934/math.2024931 |