High Toughness, Multi-dynamic Self-Healing Polyurethane for Outstanding Energy Harvesting and Sensing

Triboelectric nanogenerators (TENGs) are an emerging class of energy harvesting devices with considerable potential across diverse applications, including wearable electronic devices and self-powered sensors. However, sustained contact, friction, and incidental scratches during operation can lead to...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 50; pp. 58806 - 58814
Main Authors Cheng, Bing-Xu, Zhang, Jia-Le, Jiang, Yan, Wang, Shuangfei, Zhao, Hui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.12.2023
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.3c12384

Cover

More Information
Summary:Triboelectric nanogenerators (TENGs) are an emerging class of energy harvesting devices with considerable potential across diverse applications, including wearable electronic devices and self-powered sensors. However, sustained contact, friction, and incidental scratches during operation can lead to a deterioration in the electrical output performance of the TENG, thereby reducing its overall service life. To address this issue, we developed a self-healing elastomer by incorporating disulfide bonds and metal coordination bonds into the polyurethane (PU) chain. The resulting elastomer demonstrated exceptional toughness, with a high value of 85 kJ m–3 and an impressive self-healing efficiency of 85.5%. Specifically, the TENG based on that self-healing PU elastomer generated a short circuit current of 12 μA, an open circuit voltage of 120 V, and a transfer charge of 38.5 nC within a 2 cm × 2 cm area, operating in contact-separation mode. With an external resistance of 20 MΩ, the TENG achieved a power density of 2.1 W m–2. Notably, even after self-healing, the electrical output performance of the TENG was maintained at 95% of the undamaged device. Finally, the self-healing TENG was employed to construct a self-powered noncontact sensing system that can be applied to monitor human motion accurately. This research may expand the application prospects of PU materials in future human–computer interaction and self-powered sensing fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.3c12384