High Toughness, Multi-dynamic Self-Healing Polyurethane for Outstanding Energy Harvesting and Sensing
Triboelectric nanogenerators (TENGs) are an emerging class of energy harvesting devices with considerable potential across diverse applications, including wearable electronic devices and self-powered sensors. However, sustained contact, friction, and incidental scratches during operation can lead to...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 50; pp. 58806 - 58814 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.3c12384 |
Cover
Summary: | Triboelectric nanogenerators (TENGs) are an emerging class of energy harvesting devices with considerable potential across diverse applications, including wearable electronic devices and self-powered sensors. However, sustained contact, friction, and incidental scratches during operation can lead to a deterioration in the electrical output performance of the TENG, thereby reducing its overall service life. To address this issue, we developed a self-healing elastomer by incorporating disulfide bonds and metal coordination bonds into the polyurethane (PU) chain. The resulting elastomer demonstrated exceptional toughness, with a high value of 85 kJ m–3 and an impressive self-healing efficiency of 85.5%. Specifically, the TENG based on that self-healing PU elastomer generated a short circuit current of 12 μA, an open circuit voltage of 120 V, and a transfer charge of 38.5 nC within a 2 cm × 2 cm area, operating in contact-separation mode. With an external resistance of 20 MΩ, the TENG achieved a power density of 2.1 W m–2. Notably, even after self-healing, the electrical output performance of the TENG was maintained at 95% of the undamaged device. Finally, the self-healing TENG was employed to construct a self-powered noncontact sensing system that can be applied to monitor human motion accurately. This research may expand the application prospects of PU materials in future human–computer interaction and self-powered sensing fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.3c12384 |