Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks
A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensi...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 9; pp. 10908 - 10917 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.9b18069 |
Cover
Abstract | A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R 2 > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated. |
---|---|
AbstractList | A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R2 > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R2 > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated. A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R² > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated. A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R 2 > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated. A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity ( > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated. |
Author | Gu, Jimin Park, Inkyu Ahn, Junseong Kwon, Donguk |
AuthorAffiliation | Department of Mechanical Engineering Package Process Development Team Samsung Electronics |
AuthorAffiliation_xml | – name: Package Process Development Team Samsung Electronics – name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Jimin surname: Gu fullname: Gu, Jimin organization: Department of Mechanical Engineering – sequence: 2 givenname: Donguk surname: Kwon fullname: Kwon, Donguk organization: Package Process Development Team Samsung Electronics – sequence: 3 givenname: Junseong surname: Ahn fullname: Ahn, Junseong organization: Department of Mechanical Engineering – sequence: 4 givenname: Inkyu orcidid: 0000-0001-5761-7739 surname: Park fullname: Park, Inkyu email: inkyu@kaist.ac.kr organization: Department of Mechanical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31877014$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEURUVIyFezzbJoWQLjSiPNjGdZjJMUnGZhhy6HJ-nZVjojuZKG0H9fBbtZFELQQkKc8-Dde0GOnXdIyDVnE85K_hV0hMFOWsWnrG6PyDlvpSymZVUev72lPCMXMT4zVouSVafkTPBp0zAuz8nuJ0IA1SNdpgDW0SW66EOkT9G6DV3YzTbRVQAXB5sSOI10tgW3QerXdAZBeUd_gPNpVFjMB4XGoKHzHmLyA-Y5LzZt6YPVwesA-lf8RE7W0Ee8OtyX5Ol2vprdF4vHu--zb4sCRC1SIURZ86aWmufTmKoUbVtxAKZBtGqtBKqmalrJjKmFgUpVKJBzMIhosiMuyZf93F3wv0eMqRts1Nj34NCPsSslY7KeVqz5GBWC50CblmX08wEd1YCm2wU7QPjT_Qs0A5M9kBeOMeD6DeGse22s2zfWHRrLgvxP0DZBst699tG_r93stfzfPfsxuBzme_BfZvCqTw |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3279527 crossref_primary_10_1002_pen_25539 crossref_primary_10_1039_D1TC00256B crossref_primary_10_1016_j_compscitech_2023_110190 crossref_primary_10_1016_j_polymer_2024_126887 crossref_primary_10_1021_acsami_1c13530 crossref_primary_10_1002_mame_202200034 crossref_primary_10_1039_D2MA00897A crossref_primary_10_1109_OJEMB_2023_3289318 crossref_primary_10_1088_1361_665X_ac8c0b crossref_primary_10_1109_JSEN_2024_3513443 crossref_primary_10_1016_j_compscitech_2022_109714 crossref_primary_10_1002_admt_202200041 crossref_primary_10_1016_j_cej_2021_132159 crossref_primary_10_1038_s41467_023_36302_9 crossref_primary_10_1007_s10854_024_13189_w crossref_primary_10_1021_acsami_2c14526 crossref_primary_10_1088_1361_665X_ac976b crossref_primary_10_34133_research_0172 crossref_primary_10_1021_acsnano_1c06403 crossref_primary_10_1109_JSEN_2024_3507749 crossref_primary_10_3390_nano13020316 crossref_primary_10_1016_j_materresbull_2021_111452 crossref_primary_10_1016_j_pmatsci_2024_101298 crossref_primary_10_1016_j_cej_2022_137135 crossref_primary_10_1021_acsami_1c16177 crossref_primary_10_1007_s11664_022_09922_y crossref_primary_10_1021_acsami_0c12425 crossref_primary_10_1016_j_jer_2024_10_009 crossref_primary_10_1039_D0RA00327A crossref_primary_10_1021_acsami_4c13941 crossref_primary_10_1002_admi_202201197 crossref_primary_10_1039_D4TC00998C crossref_primary_10_1002_mame_202100954 crossref_primary_10_1109_JSEN_2023_3285397 crossref_primary_10_1038_s41528_023_00264_1 crossref_primary_10_1002_advs_202302775 crossref_primary_10_1016_j_nanoen_2023_108522 crossref_primary_10_1016_j_sna_2021_112755 crossref_primary_10_46670_JSST_2022_31_2_71 crossref_primary_10_1021_acsaelm_1c00865 crossref_primary_10_1016_j_sna_2024_115811 crossref_primary_10_1002_nano_202100003 crossref_primary_10_1002_smll_202206299 crossref_primary_10_1002_wnan_1961 crossref_primary_10_1016_j_talanta_2024_126402 crossref_primary_10_1021_acssensors_4c01428 crossref_primary_10_1002_aisy_202200128 crossref_primary_10_1021_acs_langmuir_0c01450 crossref_primary_10_1002_smll_202311736 crossref_primary_10_1002_admt_202000690 crossref_primary_10_1088_2051_672X_abfae2 crossref_primary_10_1021_acsnano_3c00025 crossref_primary_10_3390_polym14112219 crossref_primary_10_1002_adma_202419161 crossref_primary_10_1002_adfm_202502568 crossref_primary_10_1016_j_nanoen_2023_108299 crossref_primary_10_3390_mi13020170 crossref_primary_10_1080_09243046_2023_2270379 crossref_primary_10_1016_j_nanoen_2024_110124 crossref_primary_10_1039_D2TC03147G crossref_primary_10_1016_j_elstat_2025_104029 crossref_primary_10_1021_acsnano_4c15134 crossref_primary_10_1016_j_compositesb_2022_110299 crossref_primary_10_1016_j_mtcomm_2020_101651 crossref_primary_10_3390_s22010050 crossref_primary_10_1002_adfm_202214265 crossref_primary_10_1080_09205063_2021_1922170 crossref_primary_10_1002_aelm_202100190 crossref_primary_10_1039_D1TB00947H crossref_primary_10_1002_aisy_202000039 crossref_primary_10_1016_j_nanoen_2024_110045 crossref_primary_10_1109_JSEN_2023_3254139 crossref_primary_10_1039_D4TC02692F crossref_primary_10_1021_acsami_3c09362 crossref_primary_10_1016_j_ijsolstr_2023_112168 crossref_primary_10_1016_j_nanoen_2021_106447 crossref_primary_10_1016_j_plaphy_2024_108628 crossref_primary_10_1109_JSEN_2024_3395526 crossref_primary_10_1186_s42825_023_00134_6 crossref_primary_10_1515_nanoph_2021_0642 crossref_primary_10_3390_electronics9091457 crossref_primary_10_3390_ijms23168895 |
Cites_doi | 10.1021/nl204052z 10.1002/adma.201504244 10.1021/nn501204t 10.1038/srep03048 10.1038/srep00870 10.1038/srep39837 10.1039/c7tc05571d 10.1039/c7nr01011g 10.1088/0957-4484/26/37/375501 10.1016/j.carbon.2012.08.029 10.1002/adfm.201400379 10.1038/micronano.2016.43 10.1021/acsami.7b18677 10.1016/j.sna.2018.10.012 10.1002/adfm.201806306 10.1002/app.39461 10.1039/c4tc01037j 10.1002/admt.201700161 10.1021/nn200201u 10.1186/s40580-016-0062-1 10.1039/c7mh00071e 10.1002/adfm.201504755 10.1021/acsami.6b15195 10.1039/C4NR03295K 10.1021/acsami.7b03184 10.3390/s140610042 10.4103/2229-5186.79345 10.1039/c3nr05496a 10.1088/0964-1726/22/7/075006 10.1021/acsami.7b16284 10.1002/smll.201704232 10.1186/s40580-019-0180-7 10.1021/acsami.6b08172 10.1016/j.polymertesting.2016.03.014 10.1088/0957-4484/22/45/455301 10.1038/s41598-017-10279-0 10.1109/JSEN.2017.2705700 10.1002/adfm.201500628 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b18069 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 10917 |
ExternalDocumentID | 31877014 10_1021_acsami_9b18069 a000650579 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-33261764c1c1c7d5239951aa0ca39bfb3eb757940dd63da5b5e3e11adeeed1c13 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 15:28:12 EDT 2025 Fri Jul 11 09:13:29 EDT 2025 Thu Jan 02 22:59:21 EST 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 01:48:26 EDT 2025 Thu Aug 27 22:10:50 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | elastomer composite carbon nanotube wearable sensor stretchable sensor optical strain sensor |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-33261764c1c1c7d5239951aa0ca39bfb3eb757940dd63da5b5e3e11adeeed1c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5761-7739 |
PMID | 31877014 |
PQID | 2331252790 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2400468507 proquest_miscellaneous_2331252790 pubmed_primary_31877014 crossref_primary_10_1021_acsami_9b18069 crossref_citationtrail_10_1021_acsami_9b18069 acs_journals_10_1021_acsami_9b18069 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-04 |
PublicationDateYYYYMMDD | 2020-03-04 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1021/nl204052z – ident: ref2/cit2 doi: 10.1002/adma.201504244 – ident: ref8/cit8 doi: 10.1021/nn501204t – ident: ref22/cit22 doi: 10.1038/srep03048 – ident: ref37/cit37 doi: 10.1038/srep00870 – ident: ref20/cit20 doi: 10.1038/srep39837 – ident: ref26/cit26 doi: 10.1039/c7tc05571d – ident: ref38/cit38 doi: 10.1039/c7nr01011g – ident: ref15/cit15 doi: 10.1088/0957-4484/26/37/375501 – ident: ref19/cit19 doi: 10.1016/j.carbon.2012.08.029 – ident: ref13/cit13 doi: 10.1002/adfm.201400379 – ident: ref4/cit4 doi: 10.1038/micronano.2016.43 – ident: ref24/cit24 doi: 10.1021/acsami.7b18677 – ident: ref25/cit25 doi: 10.1016/j.sna.2018.10.012 – ident: ref31/cit31 doi: 10.1002/adfm.201806306 – ident: ref6/cit6 doi: 10.1002/app.39461 – ident: ref29/cit29 doi: 10.1039/c4tc01037j – ident: ref27/cit27 doi: 10.1002/admt.201700161 – ident: ref28/cit28 doi: 10.1021/nn200201u – ident: ref1/cit1 doi: 10.1186/s40580-016-0062-1 – ident: ref36/cit36 doi: 10.1039/c7mh00071e – ident: ref3/cit3 doi: 10.1002/adfm.201504755 – ident: ref18/cit18 doi: 10.1021/acsami.6b15195 – ident: ref11/cit11 doi: 10.1039/C4NR03295K – ident: ref23/cit23 doi: 10.1021/acsami.7b03184 – ident: ref16/cit16 doi: 10.3390/s140610042 – ident: ref32/cit32 doi: 10.4103/2229-5186.79345 – ident: ref10/cit10 doi: 10.1039/c3nr05496a – ident: ref21/cit21 doi: 10.1088/0964-1726/22/7/075006 – ident: ref12/cit12 doi: 10.1021/acsami.7b16284 – ident: ref35/cit35 doi: 10.1002/smll.201704232 – ident: ref7/cit7 doi: 10.1186/s40580-019-0180-7 – ident: ref14/cit14 doi: 10.1021/acsami.6b08172 – ident: ref33/cit33 doi: 10.1016/j.polymertesting.2016.03.014 – ident: ref17/cit17 doi: 10.1088/0957-4484/22/45/455301 – ident: ref30/cit30 doi: 10.1038/s41598-017-10279-0 – ident: ref5/cit5 doi: 10.1109/JSEN.2017.2705700 – ident: ref9/cit9 doi: 10.1002/adfm.201500628 |
SSID | ssj0063205 |
Score | 2.5782096 |
Snippet | A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10908 |
SubjectTerms | carbon carbon nanotubes electromagnetic interference humans hysteresis monitoring neck posture sensors (equipment) tensile strength transmittance |
Title | Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks |
URI | http://dx.doi.org/10.1021/acsami.9b18069 https://www.ncbi.nlm.nih.gov/pubmed/31877014 https://www.proquest.com/docview/2331252790 https://www.proquest.com/docview/2400468507 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5ReqEHoNBCoKBFrdTTUu_DryOKghAiXFJUbta-LFWAjWLnwq9nZu0EKApFvo5fs7Pz2Jn5hpAfyoEf4CPHXCkjppRXLDdlyUqdqlxEvp9FML5Mzq7U-XV8_XTe8W8GX_Bf2jY4Cic3PIuS_AP5KJKMY5h1MpzMdW4CT4xD_lgploHFmsMzvrofjZBtXhqhJZ5lsDCnGx3cUROACbGw5OZ41ppj-_AatvG_H79J1ns3k550cvGZrPhqi3x6Bj64Te7_gJBj4xSdhDkRdAIRbT1taKgioBcYtdNgyu7-ti0KB-1aEWhd0qGemrqioJvrdmY8G90ZDyrM0RF4422Nh-EUj3jpGAv-7BQ7-b-Qq9PR7-EZ6-cvMC0T2TIpEa49UZbDlbo4tMFyrSOrJSyokd6kMeznyLlEOh2b2EvPuXYeDC_cI7-S1aqu_C6hxkgpc6nTuLQq1T7PstxxFykjlMmEHZDvwKqi3z9NEVLjghcd_4qefwPC5stW2B7CHDl0u5T-54L-vgPvWEp5NJeCAvYXJk105etZUwgpwQcUaR69QYOKMMnAtR6QnU6EFu8DnZmmEIfuvesP98mawIAei9zUN7LaTmf-ALye1hwGgX8EOT79jw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw9Kl0B9gBBoxRYMPTkHbymsTO1xFVrbrRTpO6ar1FduxICJpUTXrh1_PsJOVj6rQpt8h24uf36fcF8IUr1AO0o6jKmEM515zGMstoJkIee45uehFMr4PxnF8t_EUH-m0uDP5EiSuV1on_p7qA28d3piNOLN3ICeJnsGfLoBhdaDBrWW-AC_vWjcw5jVBwtVUa7803sigt_5VFOxRMK2hGr-Bm-4s2vuTHxaaSF-mv_6o3PmEPB_CyUTrJ1xpLXkNH529g_69ShG9hdYcob9KoyMx2jSAztG-LdUlsTAGZGBueWMG2_F5VBlVInZhAiowMxFoWOUFOXVQbqelwKTUyNEWGqJtXhbkaJ-bCl0xN-F-6Nnn9hzAfDW8HY9p0Y6CCBayijJni7QFPXXxC5dukWFcIJxUMj1cyLUMfqdtRKmBK-NLXTLuuUBrFMM5h76CbF7l-D0RKxljMROhnKQ-FjqMoVq5yuPS4jLy0B2cIqqShpjKxjnLPTWr4JQ38ekDb00vSpqC5gdDPnePPt-NXdSmPnSNPW2RIkNqMC0XkutiUiccYaoReGDsPjDFsMYhQ0e7BUY1J2-8hBw1DtEo_PGqHn-H5-HY6SSaX198-wgvPmPom_I1_gm613uhj1IcqeWJp4DcB5gYJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT9sw9GnrJLQd9gmsjDFPTOJkSGLn64hKq7IBQioIbpEdOxICkqpJL_v1vOek1QYq2pRbZDvx8_v0-wL4IQ3qAdYz3BTC41JayVNdFLxQsUwDz3a9CE7PovGl_HkdXnd53JQLgz9R40q1c-ITVU9N0VUY8A_wPXXFSbWfeFH6El6FVP-N9KHBZMF-I1w8dK5kKXmCwmtRqfHJfJJHef23PFqhZDphM3oHF8vfdDEmt_vzRu_nvx9VcPzPfbyHt53yyQ5bbPkAL2z5Ed78UZLwE0yvEPUpnYpNXPcINkE7t5rVzMUWsBOy5ZkTcPc3TUMow9oEBVYVbKBmuioZcuyqmWvLh_faImMzbIg6elPRFTmji192SmGA-Yzy-9fhcjS8GIx515WBKxGJhgtBRdwjmfv4xCZ0ybG-Ul6uBB6zFlbHIVK5Z0wkjAp1aIX1fWUsimOcIzagV1al_QxMayFEKlQcFrmMlU2TJDW-8aQOpE6CvA-7CKqso6o6cw7zwM9a-GUd_PrAFyeY5V1hc4LQ3crxe8vx07akx8qR3xcIkSHVkStFlbaa11kgBGqGQZx6z4wh9hglqHD3YbPFpuX3kJPGMVqnW_-0w2-wdn40yk6Oz359gdcBWfwUBSe3odfM5vYrqkWN3nFk8ABaQAiD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Strain+Sensors+Using+Light+Transmittance+Change+of+Carbon+Nanotube-Embedded+Elastomers+with+Microcracks&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gu%2C+Jimin&rft.au=Kwon%2C+Donguk&rft.au=Ahn%2C+Junseong&rft.au=Park%2C+Inkyu&rft.date=2020-03-04&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=9&rft.spage=10908&rft_id=info:doi/10.1021%2Facsami.9b18069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |