Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks

A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensi...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 9; pp. 10908 - 10917
Main Authors Gu, Jimin, Kwon, Donguk, Ahn, Junseong, Park, Inkyu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.03.2020
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b18069

Cover

Abstract A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R 2 > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
AbstractList A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R2 > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R2 > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R² > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R 2 > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity ( > 0.98) in the strain range of ε = 0-100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
Author Gu, Jimin
Park, Inkyu
Ahn, Junseong
Kwon, Donguk
AuthorAffiliation Department of Mechanical Engineering
Package Process Development Team Samsung Electronics
AuthorAffiliation_xml – name: Package Process Development Team Samsung Electronics
– name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Jimin
  surname: Gu
  fullname: Gu, Jimin
  organization: Department of Mechanical Engineering
– sequence: 2
  givenname: Donguk
  surname: Kwon
  fullname: Kwon, Donguk
  organization: Package Process Development Team Samsung Electronics
– sequence: 3
  givenname: Junseong
  surname: Ahn
  fullname: Ahn, Junseong
  organization: Department of Mechanical Engineering
– sequence: 4
  givenname: Inkyu
  orcidid: 0000-0001-5761-7739
  surname: Park
  fullname: Park, Inkyu
  email: inkyu@kaist.ac.kr
  organization: Department of Mechanical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31877014$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEURUVIyFezzbJoWQLjSiPNjGdZjJMUnGZhhy6HJ-nZVjojuZKG0H9fBbtZFELQQkKc8-Dde0GOnXdIyDVnE85K_hV0hMFOWsWnrG6PyDlvpSymZVUev72lPCMXMT4zVouSVafkTPBp0zAuz8nuJ0IA1SNdpgDW0SW66EOkT9G6DV3YzTbRVQAXB5sSOI10tgW3QerXdAZBeUd_gPNpVFjMB4XGoKHzHmLyA-Y5LzZt6YPVwesA-lf8RE7W0Ee8OtyX5Ol2vprdF4vHu--zb4sCRC1SIURZ86aWmufTmKoUbVtxAKZBtGqtBKqmalrJjKmFgUpVKJBzMIhosiMuyZf93F3wv0eMqRts1Nj34NCPsSslY7KeVqz5GBWC50CblmX08wEd1YCm2wU7QPjT_Qs0A5M9kBeOMeD6DeGse22s2zfWHRrLgvxP0DZBst699tG_r93stfzfPfsxuBzme_BfZvCqTw
CitedBy_id crossref_primary_10_1109_JSEN_2023_3279527
crossref_primary_10_1002_pen_25539
crossref_primary_10_1039_D1TC00256B
crossref_primary_10_1016_j_compscitech_2023_110190
crossref_primary_10_1016_j_polymer_2024_126887
crossref_primary_10_1021_acsami_1c13530
crossref_primary_10_1002_mame_202200034
crossref_primary_10_1039_D2MA00897A
crossref_primary_10_1109_OJEMB_2023_3289318
crossref_primary_10_1088_1361_665X_ac8c0b
crossref_primary_10_1109_JSEN_2024_3513443
crossref_primary_10_1016_j_compscitech_2022_109714
crossref_primary_10_1002_admt_202200041
crossref_primary_10_1016_j_cej_2021_132159
crossref_primary_10_1038_s41467_023_36302_9
crossref_primary_10_1007_s10854_024_13189_w
crossref_primary_10_1021_acsami_2c14526
crossref_primary_10_1088_1361_665X_ac976b
crossref_primary_10_34133_research_0172
crossref_primary_10_1021_acsnano_1c06403
crossref_primary_10_1109_JSEN_2024_3507749
crossref_primary_10_3390_nano13020316
crossref_primary_10_1016_j_materresbull_2021_111452
crossref_primary_10_1016_j_pmatsci_2024_101298
crossref_primary_10_1016_j_cej_2022_137135
crossref_primary_10_1021_acsami_1c16177
crossref_primary_10_1007_s11664_022_09922_y
crossref_primary_10_1021_acsami_0c12425
crossref_primary_10_1016_j_jer_2024_10_009
crossref_primary_10_1039_D0RA00327A
crossref_primary_10_1021_acsami_4c13941
crossref_primary_10_1002_admi_202201197
crossref_primary_10_1039_D4TC00998C
crossref_primary_10_1002_mame_202100954
crossref_primary_10_1109_JSEN_2023_3285397
crossref_primary_10_1038_s41528_023_00264_1
crossref_primary_10_1002_advs_202302775
crossref_primary_10_1016_j_nanoen_2023_108522
crossref_primary_10_1016_j_sna_2021_112755
crossref_primary_10_46670_JSST_2022_31_2_71
crossref_primary_10_1021_acsaelm_1c00865
crossref_primary_10_1016_j_sna_2024_115811
crossref_primary_10_1002_nano_202100003
crossref_primary_10_1002_smll_202206299
crossref_primary_10_1002_wnan_1961
crossref_primary_10_1016_j_talanta_2024_126402
crossref_primary_10_1021_acssensors_4c01428
crossref_primary_10_1002_aisy_202200128
crossref_primary_10_1021_acs_langmuir_0c01450
crossref_primary_10_1002_smll_202311736
crossref_primary_10_1002_admt_202000690
crossref_primary_10_1088_2051_672X_abfae2
crossref_primary_10_1021_acsnano_3c00025
crossref_primary_10_3390_polym14112219
crossref_primary_10_1002_adma_202419161
crossref_primary_10_1002_adfm_202502568
crossref_primary_10_1016_j_nanoen_2023_108299
crossref_primary_10_3390_mi13020170
crossref_primary_10_1080_09243046_2023_2270379
crossref_primary_10_1016_j_nanoen_2024_110124
crossref_primary_10_1039_D2TC03147G
crossref_primary_10_1016_j_elstat_2025_104029
crossref_primary_10_1021_acsnano_4c15134
crossref_primary_10_1016_j_compositesb_2022_110299
crossref_primary_10_1016_j_mtcomm_2020_101651
crossref_primary_10_3390_s22010050
crossref_primary_10_1002_adfm_202214265
crossref_primary_10_1080_09205063_2021_1922170
crossref_primary_10_1002_aelm_202100190
crossref_primary_10_1039_D1TB00947H
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1016_j_nanoen_2024_110045
crossref_primary_10_1109_JSEN_2023_3254139
crossref_primary_10_1039_D4TC02692F
crossref_primary_10_1021_acsami_3c09362
crossref_primary_10_1016_j_ijsolstr_2023_112168
crossref_primary_10_1016_j_nanoen_2021_106447
crossref_primary_10_1016_j_plaphy_2024_108628
crossref_primary_10_1109_JSEN_2024_3395526
crossref_primary_10_1186_s42825_023_00134_6
crossref_primary_10_1515_nanoph_2021_0642
crossref_primary_10_3390_electronics9091457
crossref_primary_10_3390_ijms23168895
Cites_doi 10.1021/nl204052z
10.1002/adma.201504244
10.1021/nn501204t
10.1038/srep03048
10.1038/srep00870
10.1038/srep39837
10.1039/c7tc05571d
10.1039/c7nr01011g
10.1088/0957-4484/26/37/375501
10.1016/j.carbon.2012.08.029
10.1002/adfm.201400379
10.1038/micronano.2016.43
10.1021/acsami.7b18677
10.1016/j.sna.2018.10.012
10.1002/adfm.201806306
10.1002/app.39461
10.1039/c4tc01037j
10.1002/admt.201700161
10.1021/nn200201u
10.1186/s40580-016-0062-1
10.1039/c7mh00071e
10.1002/adfm.201504755
10.1021/acsami.6b15195
10.1039/C4NR03295K
10.1021/acsami.7b03184
10.3390/s140610042
10.4103/2229-5186.79345
10.1039/c3nr05496a
10.1088/0964-1726/22/7/075006
10.1021/acsami.7b16284
10.1002/smll.201704232
10.1186/s40580-019-0180-7
10.1021/acsami.6b08172
10.1016/j.polymertesting.2016.03.014
10.1088/0957-4484/22/45/455301
10.1038/s41598-017-10279-0
10.1109/JSEN.2017.2705700
10.1002/adfm.201500628
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b18069
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 10917
ExternalDocumentID 31877014
10_1021_acsami_9b18069
a000650579
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-33261764c1c1c7d5239951aa0ca39bfb3eb757940dd63da5b5e3e11adeeed1c13
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 15:28:12 EDT 2025
Fri Jul 11 09:13:29 EDT 2025
Thu Jan 02 22:59:21 EST 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 01:48:26 EDT 2025
Thu Aug 27 22:10:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords elastomer composite
carbon nanotube
wearable sensor
stretchable sensor
optical strain sensor
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-33261764c1c1c7d5239951aa0ca39bfb3eb757940dd63da5b5e3e11adeeed1c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5761-7739
PMID 31877014
PQID 2331252790
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2400468507
proquest_miscellaneous_2331252790
pubmed_primary_31877014
crossref_primary_10_1021_acsami_9b18069
crossref_citationtrail_10_1021_acsami_9b18069
acs_journals_10_1021_acsami_9b18069
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-04
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1021/nl204052z
– ident: ref2/cit2
  doi: 10.1002/adma.201504244
– ident: ref8/cit8
  doi: 10.1021/nn501204t
– ident: ref22/cit22
  doi: 10.1038/srep03048
– ident: ref37/cit37
  doi: 10.1038/srep00870
– ident: ref20/cit20
  doi: 10.1038/srep39837
– ident: ref26/cit26
  doi: 10.1039/c7tc05571d
– ident: ref38/cit38
  doi: 10.1039/c7nr01011g
– ident: ref15/cit15
  doi: 10.1088/0957-4484/26/37/375501
– ident: ref19/cit19
  doi: 10.1016/j.carbon.2012.08.029
– ident: ref13/cit13
  doi: 10.1002/adfm.201400379
– ident: ref4/cit4
  doi: 10.1038/micronano.2016.43
– ident: ref24/cit24
  doi: 10.1021/acsami.7b18677
– ident: ref25/cit25
  doi: 10.1016/j.sna.2018.10.012
– ident: ref31/cit31
  doi: 10.1002/adfm.201806306
– ident: ref6/cit6
  doi: 10.1002/app.39461
– ident: ref29/cit29
  doi: 10.1039/c4tc01037j
– ident: ref27/cit27
  doi: 10.1002/admt.201700161
– ident: ref28/cit28
  doi: 10.1021/nn200201u
– ident: ref1/cit1
  doi: 10.1186/s40580-016-0062-1
– ident: ref36/cit36
  doi: 10.1039/c7mh00071e
– ident: ref3/cit3
  doi: 10.1002/adfm.201504755
– ident: ref18/cit18
  doi: 10.1021/acsami.6b15195
– ident: ref11/cit11
  doi: 10.1039/C4NR03295K
– ident: ref23/cit23
  doi: 10.1021/acsami.7b03184
– ident: ref16/cit16
  doi: 10.3390/s140610042
– ident: ref32/cit32
  doi: 10.4103/2229-5186.79345
– ident: ref10/cit10
  doi: 10.1039/c3nr05496a
– ident: ref21/cit21
  doi: 10.1088/0964-1726/22/7/075006
– ident: ref12/cit12
  doi: 10.1021/acsami.7b16284
– ident: ref35/cit35
  doi: 10.1002/smll.201704232
– ident: ref7/cit7
  doi: 10.1186/s40580-019-0180-7
– ident: ref14/cit14
  doi: 10.1021/acsami.6b08172
– ident: ref33/cit33
  doi: 10.1016/j.polymertesting.2016.03.014
– ident: ref17/cit17
  doi: 10.1088/0957-4484/22/45/455301
– ident: ref30/cit30
  doi: 10.1038/s41598-017-10279-0
– ident: ref5/cit5
  doi: 10.1109/JSEN.2017.2705700
– ident: ref9/cit9
  doi: 10.1002/adfm.201500628
SSID ssj0063205
Score 2.5782096
Snippet A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10908
SubjectTerms carbon
carbon nanotubes
electromagnetic interference
humans
hysteresis
monitoring
neck
posture
sensors (equipment)
tensile strength
transmittance
Title Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks
URI http://dx.doi.org/10.1021/acsami.9b18069
https://www.ncbi.nlm.nih.gov/pubmed/31877014
https://www.proquest.com/docview/2331252790
https://www.proquest.com/docview/2400468507
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5ReqEHoNBCoKBFrdTTUu_DryOKghAiXFJUbta-LFWAjWLnwq9nZu0EKApFvo5fs7Pz2Jn5hpAfyoEf4CPHXCkjppRXLDdlyUqdqlxEvp9FML5Mzq7U-XV8_XTe8W8GX_Bf2jY4Cic3PIuS_AP5KJKMY5h1MpzMdW4CT4xD_lgploHFmsMzvrofjZBtXhqhJZ5lsDCnGx3cUROACbGw5OZ41ppj-_AatvG_H79J1ns3k550cvGZrPhqi3x6Bj64Te7_gJBj4xSdhDkRdAIRbT1taKgioBcYtdNgyu7-ti0KB-1aEWhd0qGemrqioJvrdmY8G90ZDyrM0RF4422Nh-EUj3jpGAv-7BQ7-b-Qq9PR7-EZ6-cvMC0T2TIpEa49UZbDlbo4tMFyrSOrJSyokd6kMeznyLlEOh2b2EvPuXYeDC_cI7-S1aqu_C6hxkgpc6nTuLQq1T7PstxxFykjlMmEHZDvwKqi3z9NEVLjghcd_4qefwPC5stW2B7CHDl0u5T-54L-vgPvWEp5NJeCAvYXJk105etZUwgpwQcUaR69QYOKMMnAtR6QnU6EFu8DnZmmEIfuvesP98mawIAei9zUN7LaTmf-ALye1hwGgX8EOT79jw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw9Kl0B9gBBoxRYMPTkHbymsTO1xFVrbrRTpO6ar1FduxICJpUTXrh1_PsJOVj6rQpt8h24uf36fcF8IUr1AO0o6jKmEM515zGMstoJkIee45uehFMr4PxnF8t_EUH-m0uDP5EiSuV1on_p7qA28d3piNOLN3ICeJnsGfLoBhdaDBrWW-AC_vWjcw5jVBwtVUa7803sigt_5VFOxRMK2hGr-Bm-4s2vuTHxaaSF-mv_6o3PmEPB_CyUTrJ1xpLXkNH529g_69ShG9hdYcob9KoyMx2jSAztG-LdUlsTAGZGBueWMG2_F5VBlVInZhAiowMxFoWOUFOXVQbqelwKTUyNEWGqJtXhbkaJ-bCl0xN-F-6Nnn9hzAfDW8HY9p0Y6CCBayijJni7QFPXXxC5dukWFcIJxUMj1cyLUMfqdtRKmBK-NLXTLuuUBrFMM5h76CbF7l-D0RKxljMROhnKQ-FjqMoVq5yuPS4jLy0B2cIqqShpjKxjnLPTWr4JQ38ekDb00vSpqC5gdDPnePPt-NXdSmPnSNPW2RIkNqMC0XkutiUiccYaoReGDsPjDFsMYhQ0e7BUY1J2-8hBw1DtEo_PGqHn-H5-HY6SSaX198-wgvPmPom_I1_gm613uhj1IcqeWJp4DcB5gYJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1NT9sw9GnrJLQd9gmsjDFPTOJkSGLn64hKq7IBQioIbpEdOxICkqpJL_v1vOek1QYq2pRbZDvx8_v0-wL4IQ3qAdYz3BTC41JayVNdFLxQsUwDz3a9CE7PovGl_HkdXnd53JQLgz9R40q1c-ITVU9N0VUY8A_wPXXFSbWfeFH6El6FVP-N9KHBZMF-I1w8dK5kKXmCwmtRqfHJfJJHef23PFqhZDphM3oHF8vfdDEmt_vzRu_nvx9VcPzPfbyHt53yyQ5bbPkAL2z5Ed78UZLwE0yvEPUpnYpNXPcINkE7t5rVzMUWsBOy5ZkTcPc3TUMow9oEBVYVbKBmuioZcuyqmWvLh_faImMzbIg6elPRFTmji192SmGA-Yzy-9fhcjS8GIx515WBKxGJhgtBRdwjmfv4xCZ0ybG-Ul6uBB6zFlbHIVK5Z0wkjAp1aIX1fWUsimOcIzagV1al_QxMayFEKlQcFrmMlU2TJDW-8aQOpE6CvA-7CKqso6o6cw7zwM9a-GUd_PrAFyeY5V1hc4LQ3crxe8vx07akx8qR3xcIkSHVkStFlbaa11kgBGqGQZx6z4wh9hglqHD3YbPFpuX3kJPGMVqnW_-0w2-wdn40yk6Oz359gdcBWfwUBSe3odfM5vYrqkWN3nFk8ABaQAiD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Strain+Sensors+Using+Light+Transmittance+Change+of+Carbon+Nanotube-Embedded+Elastomers+with+Microcracks&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gu%2C+Jimin&rft.au=Kwon%2C+Donguk&rft.au=Ahn%2C+Junseong&rft.au=Park%2C+Inkyu&rft.date=2020-03-04&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=9&rft.spage=10908&rft_id=info:doi/10.1021%2Facsami.9b18069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon