Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks

A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensi...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 9; pp. 10908 - 10917
Main Authors Gu, Jimin, Kwon, Donguk, Ahn, Junseong, Park, Inkyu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.03.2020
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b18069

Cover

More Information
Summary:A number of flexible and stretchable strain sensors based on piezoresistive and capacitive principles have been recently developed. However, piezoresistive sensors suffer from poor long-term stability and considerable hysteresis of signals. On the other hand, capacitive sensors exhibit limited sensitivity and strong electromagnetic interference from the neighboring environment. In order to resolve these problems, a novel stretchable strain sensor based on the modulation of optical transmittance of carbon nanotube (CNT)-embedded Ecoflex is introduced in this paper. Within the film of multiwalled CNTs embedded in the Ecoflex substrate, the microcracks are propagated under tensile strain, changing the optical transmittance of the film. The proposed sensor exhibits good stretchability (ε ≈ 400%), high linearity (R 2 > 0.98) in the strain range of ε = 0–100%, excellent stability, high sensitivity (gauge factor ≈ 30), and small hysteresis (∼1.8%). The sensor was utilized to detect the bending of the finger and wrist for the control of a robot arm. Furthermore, the applications of this sensor to the real-time posture monitoring of the neck and to the detection of subtle human motions were demonstrated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.9b18069