Selecting Double Bond Positions with a Single Cation-Responsive Iridium Olefin Isomerization Catalyst
The catalytic transposition of double bonds holds promise as an ideal route to alkenes of value as fragrances, commodity chemicals, and pharmaceuticals; yet, selective access to specific isomers is a challenge, normally requiring independent development of different catalysts for different products....
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 7; pp. 2792 - 2800 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.0c11601 |
Cover
Summary: | The catalytic transposition of double bonds holds promise as an ideal route to alkenes of value as fragrances, commodity chemicals, and pharmaceuticals; yet, selective access to specific isomers is a challenge, normally requiring independent development of different catalysts for different products. In this work, a single cation-responsive iridium catalyst selectively produces either of two different internal alkene isomers. In the absence of salts, a single positional isomerization of 1-butene derivatives furnishes 2-alkenes with exceptional regioselectivity and stereoselectivity. The same catalyst, in the presence of Na+, mediates two positional isomerizations to produce 3-alkenes. The synthesis of new iridium pincer-crown ether catalysts based on an aza-18-crown-6 ether proved instrumental in achieving cation-controlled selectivity. Experimental and computational studies guided the development of a mechanistic model that explains the observed selectivity for various functionalized 1-butenes, providing insight into strategies for catalyst development based on noncovalent modifications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.0c11601 |