High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics
A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under...
Saved in:
Published in | Nano letters Vol. 10; no. 9; pp. 3464 - 3466 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
08.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/nl101559n |
Cover
Abstract | A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 ± 57 and 91 ± 50 cm2/(V·s), respectively, at a drain bias of −1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics. |
---|---|
AbstractList | A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics. A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 ± 57 and 91 ± 50 cm2/(V·s), respectively, at a drain bias of −1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics. A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics. |
Author | Cho, Jeong Ho Lee, Seoung-Ki Ahn, Jong-Hyun Hong, Byung Hee Kim, Beom Joon Jang, Houk |
Author_xml | – sequence: 1 givenname: Beom Joon surname: Kim fullname: Kim, Beom Joon – sequence: 2 givenname: Houk surname: Jang fullname: Jang, Houk – sequence: 3 givenname: Seoung-Ki surname: Lee fullname: Lee, Seoung-Ki – sequence: 4 givenname: Byung Hee surname: Hong fullname: Hong, Byung Hee – sequence: 5 givenname: Jong-Hyun surname: Ahn fullname: Ahn, Jong-Hyun email: jhcho94@ssu.ac.kr, ahnj@skku.edu – sequence: 6 givenname: Jeong Ho surname: Cho fullname: Cho, Jeong Ho email: jhcho94@ssu.ac.kr, ahnj@skku.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23218123$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20704323$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1rGzEQBmBRUprYyaF_oOhSQg_b6Gu93mPJhx0wJAfnkNMyqx3VCrLkSjJt_n3U2nUg5KRBPBpG74zIkQ8eCfnM2XfOBL_wjjNe163_QE54LVk1aVtxdKin6piMUnpijLWyZp_IsWANU1LIE_I4tz9X1T1GE-IavEZ64_CP7R3SWYTNCn25segGem0M6kyXEXyyKYeY6G-bV_Q2eDpDR2eQkV4VWlS0Op2SjwZcwrP9OSYPN9fLy3m1uJvdXv5YVCCVytUUOdNSqh5Ke2N4L4em5RPGlAI0EtmkN40ZesU54CBQ8EYWiAL6Rul6kGNyvuu7ieHXFlPu1jZpdA48hm3qmloxoUpORX7Zy22_xqHbRLuG-Nz9T6OAr3sASYMz5avaplcnBZ_yf-7bzukYUopoDoSz7u9GusNGir14Y7XNkG3wOYJ1777YTwE6dU9hG32J7x33AnZfmQo |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1016_j_commatsci_2019_04_010 crossref_primary_10_1088_1402_4896_ad16fe crossref_primary_10_1038_srep02725 crossref_primary_10_1039_C4NR05725B crossref_primary_10_1007_s12043_019_1906_0 crossref_primary_10_1002_adfm_201802201 crossref_primary_10_1016_j_sna_2015_12_014 crossref_primary_10_1021_am508996r crossref_primary_10_1021_nl203316r crossref_primary_10_1002_aelm_201600122 crossref_primary_10_1021_acsami_7b06071 crossref_primary_10_1002_adom_202200819 crossref_primary_10_1002_adfm_201905202 crossref_primary_10_1016_j_tsf_2013_02_111 crossref_primary_10_1063_1_4923054 crossref_primary_10_1002_adma_201504245 crossref_primary_10_1016_j_matchemphys_2016_02_039 crossref_primary_10_1021_acsami_9b05280 crossref_primary_10_1063_5_0016466 crossref_primary_10_1002_marc_202100468 crossref_primary_10_1002_smll_201402422 crossref_primary_10_1002_mop_31693 crossref_primary_10_3390_nano12213820 crossref_primary_10_1021_acs_chemrev_8b00045 crossref_primary_10_1063_1_4883866 crossref_primary_10_1016_j_electacta_2017_09_006 crossref_primary_10_1039_C5CP01436K crossref_primary_10_17352_2455_3492_000010 crossref_primary_10_1021_acsnano_6b05109 crossref_primary_10_1063_1_5054120 crossref_primary_10_2139_ssrn_4055774 crossref_primary_10_7498_aps_68_20190058 crossref_primary_10_1016_j_orgel_2013_03_022 crossref_primary_10_1088_2515_7639_ac1247 crossref_primary_10_1016_j_physe_2020_113960 crossref_primary_10_1021_acsami_9b03433 crossref_primary_10_1021_nn505925u crossref_primary_10_1088_1674_4926_39_1_011007 crossref_primary_10_1007_s13391_019_00139_6 crossref_primary_10_1016_j_eml_2016_11_001 crossref_primary_10_1002_ange_201508449 crossref_primary_10_1016_j_matt_2019_11_004 crossref_primary_10_1021_acsphotonics_6b00972 crossref_primary_10_1364_OE_27_037952 crossref_primary_10_1016_j_apsusc_2019_143839 crossref_primary_10_1016_j_carbon_2012_01_030 crossref_primary_10_1080_15421406_2019_1597513 crossref_primary_10_1186_s11671_015_1060_7 crossref_primary_10_1002_adpr_202300009 crossref_primary_10_1007_s00340_022_07886_9 crossref_primary_10_1007_s12274_015_0947_z crossref_primary_10_1116_1_4862536 crossref_primary_10_1146_annurev_matsci_070214_020901 crossref_primary_10_1007_s40820_024_01534_x crossref_primary_10_1039_D1TC03502A crossref_primary_10_1002_adma_201500582 crossref_primary_10_1116_1_3662081 crossref_primary_10_1016_j_bios_2012_04_042 crossref_primary_10_1016_j_sse_2013_08_007 crossref_primary_10_9797_TSISS_2013_9_1_1 crossref_primary_10_1002_cjoc_201500672 crossref_primary_10_1088_2058_8585_ac039f crossref_primary_10_1039_C9RA09632A crossref_primary_10_1021_jp5063836 crossref_primary_10_1016_j_electacta_2018_08_062 crossref_primary_10_1039_C3CP55443K crossref_primary_10_1021_acs_chemmater_5b00026 crossref_primary_10_1007_s10854_024_13274_0 crossref_primary_10_1103_PhysRevApplied_1_014005 crossref_primary_10_1016_j_carbon_2011_10_032 crossref_primary_10_1039_c2nr30249g crossref_primary_10_1039_D0NR04120C crossref_primary_10_1049_mnl_2018_5511 crossref_primary_10_1109_ACCESS_2020_2994611 crossref_primary_10_1063_1_4895776 crossref_primary_10_1016_j_carbon_2012_08_048 crossref_primary_10_1016_j_mtcomm_2019_100684 crossref_primary_10_1021_acsami_0c21663 crossref_primary_10_1088_1361_6528_acbc82 crossref_primary_10_1016_j_carbon_2016_02_073 crossref_primary_10_1016_j_progpolymsci_2013_08_001 crossref_primary_10_1126_sciadv_abg9450 crossref_primary_10_1002_adma_201506450 crossref_primary_10_1021_nn201770s crossref_primary_10_1002_aenm_201600651 crossref_primary_10_1016_j_carbon_2020_03_040 crossref_primary_10_1007_s40843_018_9255_9 crossref_primary_10_1063_1_3702570 crossref_primary_10_1364_OE_22_0A1040 crossref_primary_10_1016_j_carbon_2013_11_024 crossref_primary_10_1021_nl203691d crossref_primary_10_1007_s11664_014_3455_0 crossref_primary_10_1021_nn403487y crossref_primary_10_7567_JJAP_55_06GF09 crossref_primary_10_1088_1361_6528_aa57ad crossref_primary_10_1088_1674_1056_ab81f3 crossref_primary_10_1002_adma_201102122 crossref_primary_10_1016_j_carbon_2015_12_073 crossref_primary_10_1021_acsaelm_9b00467 crossref_primary_10_1002_adem_202301810 crossref_primary_10_1021_jz4010448 crossref_primary_10_1039_C6NR01521B crossref_primary_10_1002_adma_201400009 crossref_primary_10_1038_s41598_017_06957_8 crossref_primary_10_1007_s11431_018_9503_8 crossref_primary_10_1021_acsami_0c08653 crossref_primary_10_1063_5_0093859 crossref_primary_10_1021_acsnano_5b01791 crossref_primary_10_1002_smll_201203154 crossref_primary_10_1007_s13538_021_01016_0 crossref_primary_10_1002_adma_201502020 crossref_primary_10_1039_C6RA22677A crossref_primary_10_1021_jp3068848 crossref_primary_10_1038_s41467_020_17006_w crossref_primary_10_1002_anie_201508449 crossref_primary_10_3938_jkps_71_92 crossref_primary_10_1088_0022_3727_44_47_473001 crossref_primary_10_1002_smll_201401812 crossref_primary_10_1016_j_enconman_2019_01_092 crossref_primary_10_1364_OL_41_000816 crossref_primary_10_1007_s12274_017_1476_8 crossref_primary_10_1039_c3nr06828e crossref_primary_10_3390_bios15030138 crossref_primary_10_1063_1_4769990 crossref_primary_10_1515_nanoph_2015_0014 crossref_primary_10_1016_j_carbon_2018_01_019 crossref_primary_10_1021_acs_nanolett_5b02107 crossref_primary_10_1364_OE_26_021768 crossref_primary_10_1002_mmce_21692 crossref_primary_10_1016_j_carbon_2014_08_021 crossref_primary_10_1002_adma_201400918 crossref_primary_10_1002_advs_202412340 crossref_primary_10_1038_srep34816 crossref_primary_10_1002_adma_201305940 crossref_primary_10_7567_APEX_9_065102 crossref_primary_10_7498_aps_62_047301 crossref_primary_10_1016_j_diamond_2013_06_002 crossref_primary_10_1039_C5TC00354G crossref_primary_10_1039_C7NR01712J crossref_primary_10_1088_2053_1583_aa5eff crossref_primary_10_1109_LED_2011_2158058 crossref_primary_10_1021_nl303666m crossref_primary_10_1016_j_nanoen_2015_01_030 crossref_primary_10_1039_C5TC02298C crossref_primary_10_1364_OE_381608 crossref_primary_10_1103_PhysRevB_89_165402 crossref_primary_10_1002_adma_201200950 crossref_primary_10_1021_acsami_9b13056 crossref_primary_10_1016_j_nanoen_2018_06_010 crossref_primary_10_1038_srep01246 crossref_primary_10_7240_marufbd_418201 crossref_primary_10_1021_nl403679f crossref_primary_10_1063_1_4810008 crossref_primary_10_1002_adom_201701047 crossref_primary_10_1002_pola_28107 crossref_primary_10_1002_pssr_201206490 crossref_primary_10_1039_c2jm31263h crossref_primary_10_1039_C5NR04004C crossref_primary_10_1039_D1NA00703C crossref_primary_10_1016_j_sintl_2020_100054 crossref_primary_10_1021_nn301199j crossref_primary_10_1021_am200721x crossref_primary_10_1021_nn400671z crossref_primary_10_3390_nano10050957 crossref_primary_10_3390_s18092774 crossref_primary_10_1039_C9TC02474C crossref_primary_10_1002_aelm_201500456 crossref_primary_10_1007_s00340_021_07731_5 crossref_primary_10_1016_j_apsusc_2018_09_137 crossref_primary_10_1002_adom_201400346 crossref_primary_10_1002_aelm_201500355 crossref_primary_10_1007_s00340_022_07941_5 crossref_primary_10_1103_PhysRevB_91_075404 crossref_primary_10_1039_C8TC03076F crossref_primary_10_1021_acsphotonics_2c01128 crossref_primary_10_1002_adma_201505739 crossref_primary_10_1021_acs_macromol_5b02268 crossref_primary_10_1007_s12274_017_1945_0 crossref_primary_10_1016_j_bios_2015_04_025 crossref_primary_10_1103_PhysRevB_99_241405 crossref_primary_10_1002_smll_201300134 crossref_primary_10_1088_1674_4926_42_1_014101 crossref_primary_10_1142_S1793292024500917 crossref_primary_10_1002_lpor_202300469 crossref_primary_10_1063_1_5087302 crossref_primary_10_1016_j_carbon_2011_08_038 crossref_primary_10_1002_smll_201202143 crossref_primary_10_1016_j_optcom_2018_06_060 crossref_primary_10_1088_2053_1583_aa6fd2 crossref_primary_10_1109_JSTQE_2013_2273413 crossref_primary_10_1002_adma_201200655 crossref_primary_10_1039_C8NR01614C crossref_primary_10_1038_srep34966 crossref_primary_10_1016_j_cap_2015_03_008 crossref_primary_10_1088_1361_6463_acea91 crossref_primary_10_1002_smll_201101696 crossref_primary_10_1007_s10854_017_8218_2 crossref_primary_10_1002_smll_201401613 crossref_primary_10_1021_acsnano_7b03554 crossref_primary_10_1021_nl202134z crossref_primary_10_1109_TAP_2017_2670327 crossref_primary_10_1063_1_4804546 crossref_primary_10_1039_c2nr30994g crossref_primary_10_1016_j_jpowsour_2013_12_034 crossref_primary_10_1021_acsami_7b16600 crossref_primary_10_1002_smll_201002009 crossref_primary_10_1002_cbic_202200282 crossref_primary_10_1039_D0RA03183F crossref_primary_10_1021_am504171u crossref_primary_10_1021_nl301335q crossref_primary_10_1002_adfm_202005958 crossref_primary_10_1016_j_physb_2018_12_039 crossref_primary_10_1088_0256_307X_36_7_078501 crossref_primary_10_1088_1361_6528_aae683 crossref_primary_10_1063_1_4916341 crossref_primary_10_1016_j_cossms_2021_100900 crossref_primary_10_1002_adfm_201602960 crossref_primary_10_1021_acsnano_5b02616 crossref_primary_10_1021_acsami_5b00163 crossref_primary_10_1021_nl2029859 crossref_primary_10_1039_C8NR05408H crossref_primary_10_1021_acsami_5b05727 crossref_primary_10_1063_1_4833315 crossref_primary_10_1007_s11434_016_1115_x crossref_primary_10_1039_C1NR11149C crossref_primary_10_1007_s10853_015_9121_y crossref_primary_10_1039_C5NR05175D crossref_primary_10_1039_D2NR04206A crossref_primary_10_1007_s10570_019_02339_7 crossref_primary_10_1039_C5RA02010G crossref_primary_10_1002_adfm_201706587 crossref_primary_10_1016_j_matchemphys_2023_127781 crossref_primary_10_1002_cssc_201100430 crossref_primary_10_1016_j_polymer_2016_01_038 crossref_primary_10_1038_s41598_017_10043_4 crossref_primary_10_1038_s41427_021_00281_4 crossref_primary_10_1103_PhysRevB_92_214419 crossref_primary_10_1038_srep34065 crossref_primary_10_1364_OE_401255 crossref_primary_10_1021_jp406681j crossref_primary_10_1039_C2TC00010E crossref_primary_10_1007_s12613_022_2426_3 crossref_primary_10_1038_ncomms2021 crossref_primary_10_1038_srep12575 crossref_primary_10_1021_acs_jpcc_8b06906 crossref_primary_10_1039_C8TC00530C crossref_primary_10_1063_1_4954799 crossref_primary_10_1080_01691864_2015_1095653 crossref_primary_10_1016_j_mtphys_2017_07_001 crossref_primary_10_1021_nl504612y crossref_primary_10_5714_CL_2012_13_1_001 crossref_primary_10_1021_acsami_8b19672 crossref_primary_10_1109_MNANO_2015_2441105 crossref_primary_10_1063_1_4711776 crossref_primary_10_1063_1_4798484 crossref_primary_10_1109_JPROC_2013_2257633 crossref_primary_10_1016_j_physe_2024_116124 crossref_primary_10_1016_j_carbon_2011_09_044 crossref_primary_10_3390_nano10081503 crossref_primary_10_1088_2053_1583_2_3_034011 crossref_primary_10_1002_adfm_202211880 crossref_primary_10_1364_OE_27_033768 crossref_primary_10_1088_2053_1591_ab2e83 crossref_primary_10_1016_j_carbon_2013_09_050 crossref_primary_10_1002_adom_201600723 crossref_primary_10_1021_nl3039212 crossref_primary_10_1016_j_carbon_2020_04_096 crossref_primary_10_1039_c1jm11691f crossref_primary_10_1039_C5RA22065C crossref_primary_10_1002_admt_202000744 crossref_primary_10_1109_TAP_2017_2670520 crossref_primary_10_35848_1347_4065_ac4b6c crossref_primary_10_1002_advs_202105623 crossref_primary_10_1021_acsami_8b05932 crossref_primary_10_1016_j_carbon_2016_09_060 crossref_primary_10_1038_s41598_017_03264_0 crossref_primary_10_1002_admt_202001273 crossref_primary_10_1016_j_electacta_2019_05_039 crossref_primary_10_1039_C5NR02292D crossref_primary_10_1002_adfm_201808909 crossref_primary_10_1016_j_eurpolymj_2017_11_050 crossref_primary_10_1016_j_apsusc_2013_12_007 crossref_primary_10_1039_c3cp55270e crossref_primary_10_1021_nl500446s crossref_primary_10_1021_nn400899v crossref_primary_10_1002_adsr_202300061 crossref_primary_10_1021_cm502491n crossref_primary_10_1016_j_bios_2018_10_047 crossref_primary_10_1073_pnas_1306508110 crossref_primary_10_1039_c3nr06517k crossref_primary_10_1177_01445987211036828 crossref_primary_10_1016_j_talanta_2022_123697 crossref_primary_10_1039_c3cp50675d crossref_primary_10_1063_1_4950975 crossref_primary_10_3390_s20185188 crossref_primary_10_1021_acsami_8b20766 crossref_primary_10_1038_s41528_021_00110_2 crossref_primary_10_1002_adma_201800449 crossref_primary_10_1039_C8ME00100F crossref_primary_10_1038_am_2013_41 crossref_primary_10_1088_0022_3727_48_45_455102 crossref_primary_10_1088_0953_8984_25_15_155303 crossref_primary_10_1021_acsnano_5b02816 crossref_primary_10_1021_acsnano_7b04898 crossref_primary_10_1186_s40580_014_0015_5 crossref_primary_10_1007_s11468_025_02786_y crossref_primary_10_1038_s41563_018_0249_4 crossref_primary_10_1021_nn406221s crossref_primary_10_1016_j_apsusc_2018_05_131 crossref_primary_10_1007_s40820_021_00660_0 crossref_primary_10_1021_nn302193q crossref_primary_10_1109_LED_2011_2163489 crossref_primary_10_1021_am2002873 crossref_primary_10_3390_mi10010054 crossref_primary_10_1021_acs_langmuir_3c01098 crossref_primary_10_1039_D0TB01687J crossref_primary_10_1021_acsaelm_0c00707 crossref_primary_10_1016_j_carbon_2013_11_071 crossref_primary_10_1038_nature09866 crossref_primary_10_1002_smll_201400463 crossref_primary_10_1109_JMEMS_2014_2312714 crossref_primary_10_1002_adma_201704253 crossref_primary_10_1088_2053_1583_ab81b0 crossref_primary_10_35848_1347_4065_ad3ed2 crossref_primary_10_1007_s10973_024_13985_w crossref_primary_10_1016_j_aca_2016_03_002 crossref_primary_10_1002_adma_201202973 crossref_primary_10_1039_c3nr33560g crossref_primary_10_1186_1556_276X_8_473 crossref_primary_10_1016_j_mser_2014_08_002 crossref_primary_10_1088_0957_4484_25_1_014002 crossref_primary_10_1002_aenm_201902842 crossref_primary_10_1002_marc_201800246 crossref_primary_10_1021_acs_nanolett_4c03832 crossref_primary_10_1016_j_nanoen_2020_105610 crossref_primary_10_1007_s10854_012_0923_2 crossref_primary_10_1039_c2nr30330b crossref_primary_10_9797_TSISS_2012_8_2_056 crossref_primary_10_1063_1_4824475 crossref_primary_10_1088_0957_4484_24_47_475202 crossref_primary_10_1063_1_4894082 crossref_primary_10_1088_0957_4484_27_46_462001 crossref_primary_10_1016_j_flatc_2017_06_002 crossref_primary_10_1016_j_snb_2015_11_130 crossref_primary_10_1063_1_5128050 crossref_primary_10_1002_admi_201700603 crossref_primary_10_1021_nl300948c crossref_primary_10_1021_acsami_8b07469 crossref_primary_10_1016_j_mattod_2019_08_013 crossref_primary_10_1021_nn203054t crossref_primary_10_1021_nn3055835 crossref_primary_10_1088_1361_6641_aa5f39 crossref_primary_10_1109_JSTQE_2024_3359185 crossref_primary_10_1007_s42823_024_00704_6 crossref_primary_10_4028_www_scientific_net_KEM_531_532_383 |
Cites_doi | 10.1002/adma.200701069 10.1002/adma.201090021 10.1038/nature04233 10.1126/science.1184289 10.1038/nmat2291 10.1126/science.1158877 10.1021/nl903272n 10.1021/jp901426e 10.1021/nl801827v 10.1038/nature04235 10.1109/LED.2009.2020615 10.1021/nl803922m 10.1063/1.2779107 10.1038/nnano.2010.132 10.1126/science.1171245 10.1002/adma.200701059 10.1021/nl9028736 10.1021/nl803316h 10.1038/nnano.2008.115 10.1038/nature07719 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1021/nl101559n |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1530-6992 |
EndPage | 3466 |
ExternalDocumentID | 20704323 23218123 10_1021_nl101559n a564328291 |
Genre | Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7X8 |
ID | FETCH-LOGICAL-a344t-8e10c334bafecff1b3d79160044aef3e06bf7fdb411aed2e2173ecfe2ab74c5d3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Sep 05 14:18:34 EDT 2025 Mon Jul 21 06:01:48 EDT 2025 Mon Jul 21 09:16:42 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Tue Jul 01 00:42:38 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ion gel flexible electronics field effect transistor Graphene low-voltage operation Field effect transistors Gallium tellurides Hole mobility Electron mobility Capacitance Low field Arrays IV characteristic Flexibility Gates |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a344t-8e10c334bafecff1b3d79160044aef3e06bf7fdb411aed2e2173ecfe2ab74c5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20704323 |
PQID | 754024102 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_754024102 pubmed_primary_20704323 pascalfrancis_primary_23218123 crossref_primary_10_1021_nl101559n crossref_citationtrail_10_1021_nl101559n acs_journals_10_1021_nl101559n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-08 |
PublicationDateYYYYMMDD | 2010-09-08 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref17/cit17 Li X. (ref7/cit7) 2009; 324 Novikov D. S. (ref18/cit18) 2007; 91 Lee Y. (ref9/cit9) 2010; 10 Novoselov K. S. (ref2/cit2) 2005; 438 Cho J. H. (ref14/cit14) 2008; 20 Lee J. (ref16/cit16) 2009; 113 Chen F. (ref19/cit19) 2009; 9 Reina A. (ref6/cit6) 2008; 9 Lin Y.-M. (ref8/cit8) 2010; 327 Liao L. (ref13/cit13) 2010; 22 Kedzierski J. (ref10/cit10) 2009; 30 Wang S. (ref20/cit20) 2010; 10 Kim K. S. (ref5/cit5) 2009; 457 Chen J.-H. (ref11/cit11) 2007; 19 Rogers J. A. (ref4/cit4) 2008; 3 Zhang Y. (ref3/cit3) 2005; 438 Cho J. H. (ref15/cit15) 2008; 7 Lin Y.-M. (ref12/cit12) 2009; 9 Geim A. K. (ref1/cit1) 2009; 324 |
References_xml | – volume: 20 start-page: 686 year: 2008 ident: ref14/cit14 publication-title: Adv. Mater. doi: 10.1002/adma.200701069 – volume: 22 start-page: 1 year: 2010 ident: ref13/cit13 publication-title: Adv. Mater. doi: 10.1002/adma.201090021 – volume: 438 start-page: 197 year: 2005 ident: ref2/cit2 publication-title: Nature doi: 10.1038/nature04233 – volume: 327 start-page: 662 year: 2010 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.1184289 – volume: 7 start-page: 900 year: 2008 ident: ref15/cit15 publication-title: Nat. Mater. doi: 10.1038/nmat2291 – volume: 324 start-page: 1530 year: 2009 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.1158877 – volume: 10 start-page: 490 year: 2010 ident: ref9/cit9 publication-title: Nano Lett. doi: 10.1021/nl903272n – volume: 113 start-page: 8972 year: 2009 ident: ref16/cit16 publication-title: J. Phys. Chem. C doi: 10.1021/jp901426e – volume: 9 start-page: 30 year: 2008 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 438 start-page: 201 year: 2005 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature04235 – volume: 30 start-page: 745 year: 2009 ident: ref10/cit10 publication-title: IEEE Trans. Electron Devices doi: 10.1109/LED.2009.2020615 – volume: 9 start-page: 1621 year: 2009 ident: ref19/cit19 publication-title: Nano Lett. doi: 10.1021/nl803922m – volume: 91 start-page: 2779107 year: 2007 ident: ref18/cit18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2779107 – ident: ref17/cit17 doi: 10.1038/nnano.2010.132 – volume: 324 start-page: 1312 year: 2009 ident: ref7/cit7 publication-title: Science doi: 10.1126/science.1171245 – volume: 19 start-page: 3623 year: 2007 ident: ref11/cit11 publication-title: Adv. Mater. doi: 10.1002/adma.200701059 – volume: 10 start-page: 92 year: 2010 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl9028736 – volume: 9 start-page: 422 year: 2009 ident: ref12/cit12 publication-title: Nano Lett. doi: 10.1021/nl803316h – volume: 3 start-page: 254 year: 2008 ident: ref4/cit4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.115 – volume: 457 start-page: 706 year: 2009 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature07719 |
SSID | ssj0009350 |
Score | 2.520963 |
Snippet | A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable,... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3464 |
SubjectTerms | Applied sciences Cross-disciplinary physics: materials science; rheology Electronics Exact sciences and technology Fullerenes and related materials; diamonds, graphite Materials science Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Transistors |
Title | High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics |
URI | http://dx.doi.org/10.1021/nl101559n https://www.ncbi.nlm.nih.gov/pubmed/20704323 https://www.proquest.com/docview/754024102 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEJ4gXjTG9wMfpFEPXha3D1j2aEBAE42JkuBp0-62CZEsxF0u_nqnuzyj6H3apJ2239fO9BuA6ygDxYg7xrjaEQZ94YdKOr5hNBLId2X2lP30XOt0xWOv2ivA1YoIPqO38YBaXPfjNVhnNcQXy38ar3NlXZ6VYcWdi_cgvy6m8kGLTS30hMkS9GyNZIKzYPLyFav5ZYYzrR1oTn_r5OklH5Vxqirh10_xxr-GsAvbE55J7vKFsQcFHe_D5oL64AG82xwP52X-c4C0rDqmGmjStjLWeAqSlk1wI7nEMclwLZMVSYh9vyUPw5i09YDYJzjS7Ocldfphcgjd1v1bo-NMKi04kguROnVN3ZBzoSR2ZwxVPPKQN9por9SGa7emjGciJSiVOmIa7zEcDTWTyhNhNeJHUIyHsT4BooTvMRbVlatDwZjGG5PxbR1ATg3SPb8EZXRFMNkpSZAFwRkNZnNUgpupl4JwolNuy2UMfjO9nJmOcnGO34zKS66eWSKXtPSGl4BMfR_g3rIBExnr4TgJPKSzyHBcVoLjfE3MG-NRKTjjp_8N5ww28oQD33Hr51BMP8f6AnlMqsrZOv4GzezrlQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHAAh9qUsxUIcuATipU1zrAqlLK2QKBKcIjuxJUSVItJe-HrGTtoCKoL72PIy9jzb4_cAThIXFBPuGeNrTxicizBW0gsNo4lAvCvdVXa7U209ipunylNBk2P_wmAjMqwpc4_4E3YBep72qA3vYToL85WqqFqZhnrjYUKwy50aKy5gPA6FNTFiEfpa1EagOPsWgZbfZIaDYXIVi99hpgs3zdVct8g11GWZvJ4NB-os_vjB4fi_nqzBSoE6ST13k3WY0ekGLH3hItyEZ5vx4d1P_hGQpuXKVD1NriypNe6JpGnT3UhOeExclHMkIxmxt7nkup-SK90j9kKOXLzkAjsvcbYFj83LbqPlFboLnuRCDLyapn7MuVASqzOGKp4EiCLt26_Uhmu_qkxgEiUolTphGk81HA01kyoQcSXh2zCX9lO9C0SJMGAsqSlfx4IxjecnE1pVQE4Ngr-wBGUcoqhYN1nknsQZjcZjVILT0WRFccFabsUzetNMj8embzlVxzSj8rcZH1sisrRgh5eAjFwgwpVmn09kqvvDLAoQ3CLe8VkJdnLXmBTGjVNwxvf-6s4RLLS67bvo7rpzuw-LeSpC6Pm1A5gbvA_1ISKcgSo71_4EpD7z9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB48QBTxPupRg_jgy9bNodt9FHW9D1BBn5Zkk4BYtsVtX_z1TrLbVkXR90nIMZP5Jpl8A7CjvVPUPLA2NIGwuBdxpmQQW0a1QLwr_VX29c3B2aO4eNp_qgJF9xcGB1FgT4V_xHdW3dG2Yhige3mLOhcf56MwjkCEulINh0f3Q5Jd7iuyohFjSBQ3RZ9J6HNT54Wy4osXmu7IAhfElpUsfoea3uUks3A7GKzPNHlt9Lqqkb1_43H8_2zmYKZCn-SwVJd5GDH5Akx94iRchGeX-RHcDf8TkMRxZqqWIaeO3BrPRpK4tDdSEh8T7-082UhB3K0uOW_n5NS0iLuYI8cvZaGdl6xYgsfk5OHoLKjqLwSSC9ENmoaGGedCSezOWqq4jhBNujdgaSw34YGykdVKUCqNZgajG46ChkkViWxf82UYy9u5WQWiRBwxppsqNJlgzGAcZWNXHZBTiyAwrkEdlymt7KdI_dM4o-lgjWqw29-wNKvYy10RjdZPotsD0U5J2fGTUP3Lrg8kEWE60MNrQPpqkKLFuWcUmZt2r0gjBLmIe0JWg5VSPYaN8QAVnPG1v6azBRN3x0l6dX5zuQ6TZUZCHITNDRjrvvXMJgKdrqp77f4AixL2cQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Flexible+Graphene+Field+Effect+Transistors+with+Ion+Gel+Gate+Dielectrics&rft.jtitle=Nano+letters&rft.au=Kim%2C+Beom+Joon&rft.au=Jang%2C+Houk&rft.au=Lee%2C+Seoung-Ki&rft.au=Hong%2C+Byung+Hee&rft.date=2010-09-08&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=10&rft.issue=9&rft.spage=3464&rft.epage=3466&rft_id=info:doi/10.1021%2Fnl101559n&rft.externalDocID=a564328291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |