High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics

A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 10; no. 9; pp. 3464 - 3466
Main Authors Kim, Beom Joon, Jang, Houk, Lee, Seoung-Ki, Hong, Byung Hee, Ahn, Jong-Hyun, Cho, Jeong Ho
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 08.09.2010
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/nl101559n

Cover

Abstract A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 ± 57 and 91 ± 50 cm2/(V·s), respectively, at a drain bias of −1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.
AbstractList A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.
A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 ± 57 and 91 ± 50 cm2/(V·s), respectively, at a drain bias of −1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.
A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable, high-capacitance ion gel gate dielectrics. The high capacitance of the ion gel, which originated from the formation of an electric double layer under the application of a gate voltage, yielded a high on-current and low voltage operation below 3 V. The graphene FETs fabricated on the plastic substrates showed a hole and electron mobility of 203 +/- 57 and 91 +/- 50 cm(2)/(V x s), respectively, at a drain bias of -1 V. Moreover, ion gel gated graphene FETs on the plastic substrates exhibited remarkably good mechanical flexibility. This method represents a significant step in the application of graphene to flexible and stretchable electronics.
Author Cho, Jeong Ho
Lee, Seoung-Ki
Ahn, Jong-Hyun
Hong, Byung Hee
Kim, Beom Joon
Jang, Houk
Author_xml – sequence: 1
  givenname: Beom Joon
  surname: Kim
  fullname: Kim, Beom Joon
– sequence: 2
  givenname: Houk
  surname: Jang
  fullname: Jang, Houk
– sequence: 3
  givenname: Seoung-Ki
  surname: Lee
  fullname: Lee, Seoung-Ki
– sequence: 4
  givenname: Byung Hee
  surname: Hong
  fullname: Hong, Byung Hee
– sequence: 5
  givenname: Jong-Hyun
  surname: Ahn
  fullname: Ahn, Jong-Hyun
  email: jhcho94@ssu.ac.kr, ahnj@skku.edu
– sequence: 6
  givenname: Jeong Ho
  surname: Cho
  fullname: Cho, Jeong Ho
  email: jhcho94@ssu.ac.kr, ahnj@skku.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23218123$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20704323$$D View this record in MEDLINE/PubMed
BookMark eNpt0U1rGzEQBmBRUprYyaF_oOhSQg_b6Gu93mPJhx0wJAfnkNMyqx3VCrLkSjJt_n3U2nUg5KRBPBpG74zIkQ8eCfnM2XfOBL_wjjNe163_QE54LVk1aVtxdKin6piMUnpijLWyZp_IsWANU1LIE_I4tz9X1T1GE-IavEZ64_CP7R3SWYTNCn25segGem0M6kyXEXyyKYeY6G-bV_Q2eDpDR2eQkV4VWlS0Op2SjwZcwrP9OSYPN9fLy3m1uJvdXv5YVCCVytUUOdNSqh5Ke2N4L4em5RPGlAI0EtmkN40ZesU54CBQ8EYWiAL6Rul6kGNyvuu7ieHXFlPu1jZpdA48hm3qmloxoUpORX7Zy22_xqHbRLuG-Nz9T6OAr3sASYMz5avaplcnBZ_yf-7bzukYUopoDoSz7u9GusNGir14Y7XNkG3wOYJ1777YTwE6dU9hG32J7x33AnZfmQo
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_1016_j_commatsci_2019_04_010
crossref_primary_10_1088_1402_4896_ad16fe
crossref_primary_10_1038_srep02725
crossref_primary_10_1039_C4NR05725B
crossref_primary_10_1007_s12043_019_1906_0
crossref_primary_10_1002_adfm_201802201
crossref_primary_10_1016_j_sna_2015_12_014
crossref_primary_10_1021_am508996r
crossref_primary_10_1021_nl203316r
crossref_primary_10_1002_aelm_201600122
crossref_primary_10_1021_acsami_7b06071
crossref_primary_10_1002_adom_202200819
crossref_primary_10_1002_adfm_201905202
crossref_primary_10_1016_j_tsf_2013_02_111
crossref_primary_10_1063_1_4923054
crossref_primary_10_1002_adma_201504245
crossref_primary_10_1016_j_matchemphys_2016_02_039
crossref_primary_10_1021_acsami_9b05280
crossref_primary_10_1063_5_0016466
crossref_primary_10_1002_marc_202100468
crossref_primary_10_1002_smll_201402422
crossref_primary_10_1002_mop_31693
crossref_primary_10_3390_nano12213820
crossref_primary_10_1021_acs_chemrev_8b00045
crossref_primary_10_1063_1_4883866
crossref_primary_10_1016_j_electacta_2017_09_006
crossref_primary_10_1039_C5CP01436K
crossref_primary_10_17352_2455_3492_000010
crossref_primary_10_1021_acsnano_6b05109
crossref_primary_10_1063_1_5054120
crossref_primary_10_2139_ssrn_4055774
crossref_primary_10_7498_aps_68_20190058
crossref_primary_10_1016_j_orgel_2013_03_022
crossref_primary_10_1088_2515_7639_ac1247
crossref_primary_10_1016_j_physe_2020_113960
crossref_primary_10_1021_acsami_9b03433
crossref_primary_10_1021_nn505925u
crossref_primary_10_1088_1674_4926_39_1_011007
crossref_primary_10_1007_s13391_019_00139_6
crossref_primary_10_1016_j_eml_2016_11_001
crossref_primary_10_1002_ange_201508449
crossref_primary_10_1016_j_matt_2019_11_004
crossref_primary_10_1021_acsphotonics_6b00972
crossref_primary_10_1364_OE_27_037952
crossref_primary_10_1016_j_apsusc_2019_143839
crossref_primary_10_1016_j_carbon_2012_01_030
crossref_primary_10_1080_15421406_2019_1597513
crossref_primary_10_1186_s11671_015_1060_7
crossref_primary_10_1002_adpr_202300009
crossref_primary_10_1007_s00340_022_07886_9
crossref_primary_10_1007_s12274_015_0947_z
crossref_primary_10_1116_1_4862536
crossref_primary_10_1146_annurev_matsci_070214_020901
crossref_primary_10_1007_s40820_024_01534_x
crossref_primary_10_1039_D1TC03502A
crossref_primary_10_1002_adma_201500582
crossref_primary_10_1116_1_3662081
crossref_primary_10_1016_j_bios_2012_04_042
crossref_primary_10_1016_j_sse_2013_08_007
crossref_primary_10_9797_TSISS_2013_9_1_1
crossref_primary_10_1002_cjoc_201500672
crossref_primary_10_1088_2058_8585_ac039f
crossref_primary_10_1039_C9RA09632A
crossref_primary_10_1021_jp5063836
crossref_primary_10_1016_j_electacta_2018_08_062
crossref_primary_10_1039_C3CP55443K
crossref_primary_10_1021_acs_chemmater_5b00026
crossref_primary_10_1007_s10854_024_13274_0
crossref_primary_10_1103_PhysRevApplied_1_014005
crossref_primary_10_1016_j_carbon_2011_10_032
crossref_primary_10_1039_c2nr30249g
crossref_primary_10_1039_D0NR04120C
crossref_primary_10_1049_mnl_2018_5511
crossref_primary_10_1109_ACCESS_2020_2994611
crossref_primary_10_1063_1_4895776
crossref_primary_10_1016_j_carbon_2012_08_048
crossref_primary_10_1016_j_mtcomm_2019_100684
crossref_primary_10_1021_acsami_0c21663
crossref_primary_10_1088_1361_6528_acbc82
crossref_primary_10_1016_j_carbon_2016_02_073
crossref_primary_10_1016_j_progpolymsci_2013_08_001
crossref_primary_10_1126_sciadv_abg9450
crossref_primary_10_1002_adma_201506450
crossref_primary_10_1021_nn201770s
crossref_primary_10_1002_aenm_201600651
crossref_primary_10_1016_j_carbon_2020_03_040
crossref_primary_10_1007_s40843_018_9255_9
crossref_primary_10_1063_1_3702570
crossref_primary_10_1364_OE_22_0A1040
crossref_primary_10_1016_j_carbon_2013_11_024
crossref_primary_10_1021_nl203691d
crossref_primary_10_1007_s11664_014_3455_0
crossref_primary_10_1021_nn403487y
crossref_primary_10_7567_JJAP_55_06GF09
crossref_primary_10_1088_1361_6528_aa57ad
crossref_primary_10_1088_1674_1056_ab81f3
crossref_primary_10_1002_adma_201102122
crossref_primary_10_1016_j_carbon_2015_12_073
crossref_primary_10_1021_acsaelm_9b00467
crossref_primary_10_1002_adem_202301810
crossref_primary_10_1021_jz4010448
crossref_primary_10_1039_C6NR01521B
crossref_primary_10_1002_adma_201400009
crossref_primary_10_1038_s41598_017_06957_8
crossref_primary_10_1007_s11431_018_9503_8
crossref_primary_10_1021_acsami_0c08653
crossref_primary_10_1063_5_0093859
crossref_primary_10_1021_acsnano_5b01791
crossref_primary_10_1002_smll_201203154
crossref_primary_10_1007_s13538_021_01016_0
crossref_primary_10_1002_adma_201502020
crossref_primary_10_1039_C6RA22677A
crossref_primary_10_1021_jp3068848
crossref_primary_10_1038_s41467_020_17006_w
crossref_primary_10_1002_anie_201508449
crossref_primary_10_3938_jkps_71_92
crossref_primary_10_1088_0022_3727_44_47_473001
crossref_primary_10_1002_smll_201401812
crossref_primary_10_1016_j_enconman_2019_01_092
crossref_primary_10_1364_OL_41_000816
crossref_primary_10_1007_s12274_017_1476_8
crossref_primary_10_1039_c3nr06828e
crossref_primary_10_3390_bios15030138
crossref_primary_10_1063_1_4769990
crossref_primary_10_1515_nanoph_2015_0014
crossref_primary_10_1016_j_carbon_2018_01_019
crossref_primary_10_1021_acs_nanolett_5b02107
crossref_primary_10_1364_OE_26_021768
crossref_primary_10_1002_mmce_21692
crossref_primary_10_1016_j_carbon_2014_08_021
crossref_primary_10_1002_adma_201400918
crossref_primary_10_1002_advs_202412340
crossref_primary_10_1038_srep34816
crossref_primary_10_1002_adma_201305940
crossref_primary_10_7567_APEX_9_065102
crossref_primary_10_7498_aps_62_047301
crossref_primary_10_1016_j_diamond_2013_06_002
crossref_primary_10_1039_C5TC00354G
crossref_primary_10_1039_C7NR01712J
crossref_primary_10_1088_2053_1583_aa5eff
crossref_primary_10_1109_LED_2011_2158058
crossref_primary_10_1021_nl303666m
crossref_primary_10_1016_j_nanoen_2015_01_030
crossref_primary_10_1039_C5TC02298C
crossref_primary_10_1364_OE_381608
crossref_primary_10_1103_PhysRevB_89_165402
crossref_primary_10_1002_adma_201200950
crossref_primary_10_1021_acsami_9b13056
crossref_primary_10_1016_j_nanoen_2018_06_010
crossref_primary_10_1038_srep01246
crossref_primary_10_7240_marufbd_418201
crossref_primary_10_1021_nl403679f
crossref_primary_10_1063_1_4810008
crossref_primary_10_1002_adom_201701047
crossref_primary_10_1002_pola_28107
crossref_primary_10_1002_pssr_201206490
crossref_primary_10_1039_c2jm31263h
crossref_primary_10_1039_C5NR04004C
crossref_primary_10_1039_D1NA00703C
crossref_primary_10_1016_j_sintl_2020_100054
crossref_primary_10_1021_nn301199j
crossref_primary_10_1021_am200721x
crossref_primary_10_1021_nn400671z
crossref_primary_10_3390_nano10050957
crossref_primary_10_3390_s18092774
crossref_primary_10_1039_C9TC02474C
crossref_primary_10_1002_aelm_201500456
crossref_primary_10_1007_s00340_021_07731_5
crossref_primary_10_1016_j_apsusc_2018_09_137
crossref_primary_10_1002_adom_201400346
crossref_primary_10_1002_aelm_201500355
crossref_primary_10_1007_s00340_022_07941_5
crossref_primary_10_1103_PhysRevB_91_075404
crossref_primary_10_1039_C8TC03076F
crossref_primary_10_1021_acsphotonics_2c01128
crossref_primary_10_1002_adma_201505739
crossref_primary_10_1021_acs_macromol_5b02268
crossref_primary_10_1007_s12274_017_1945_0
crossref_primary_10_1016_j_bios_2015_04_025
crossref_primary_10_1103_PhysRevB_99_241405
crossref_primary_10_1002_smll_201300134
crossref_primary_10_1088_1674_4926_42_1_014101
crossref_primary_10_1142_S1793292024500917
crossref_primary_10_1002_lpor_202300469
crossref_primary_10_1063_1_5087302
crossref_primary_10_1016_j_carbon_2011_08_038
crossref_primary_10_1002_smll_201202143
crossref_primary_10_1016_j_optcom_2018_06_060
crossref_primary_10_1088_2053_1583_aa6fd2
crossref_primary_10_1109_JSTQE_2013_2273413
crossref_primary_10_1002_adma_201200655
crossref_primary_10_1039_C8NR01614C
crossref_primary_10_1038_srep34966
crossref_primary_10_1016_j_cap_2015_03_008
crossref_primary_10_1088_1361_6463_acea91
crossref_primary_10_1002_smll_201101696
crossref_primary_10_1007_s10854_017_8218_2
crossref_primary_10_1002_smll_201401613
crossref_primary_10_1021_acsnano_7b03554
crossref_primary_10_1021_nl202134z
crossref_primary_10_1109_TAP_2017_2670327
crossref_primary_10_1063_1_4804546
crossref_primary_10_1039_c2nr30994g
crossref_primary_10_1016_j_jpowsour_2013_12_034
crossref_primary_10_1021_acsami_7b16600
crossref_primary_10_1002_smll_201002009
crossref_primary_10_1002_cbic_202200282
crossref_primary_10_1039_D0RA03183F
crossref_primary_10_1021_am504171u
crossref_primary_10_1021_nl301335q
crossref_primary_10_1002_adfm_202005958
crossref_primary_10_1016_j_physb_2018_12_039
crossref_primary_10_1088_0256_307X_36_7_078501
crossref_primary_10_1088_1361_6528_aae683
crossref_primary_10_1063_1_4916341
crossref_primary_10_1016_j_cossms_2021_100900
crossref_primary_10_1002_adfm_201602960
crossref_primary_10_1021_acsnano_5b02616
crossref_primary_10_1021_acsami_5b00163
crossref_primary_10_1021_nl2029859
crossref_primary_10_1039_C8NR05408H
crossref_primary_10_1021_acsami_5b05727
crossref_primary_10_1063_1_4833315
crossref_primary_10_1007_s11434_016_1115_x
crossref_primary_10_1039_C1NR11149C
crossref_primary_10_1007_s10853_015_9121_y
crossref_primary_10_1039_C5NR05175D
crossref_primary_10_1039_D2NR04206A
crossref_primary_10_1007_s10570_019_02339_7
crossref_primary_10_1039_C5RA02010G
crossref_primary_10_1002_adfm_201706587
crossref_primary_10_1016_j_matchemphys_2023_127781
crossref_primary_10_1002_cssc_201100430
crossref_primary_10_1016_j_polymer_2016_01_038
crossref_primary_10_1038_s41598_017_10043_4
crossref_primary_10_1038_s41427_021_00281_4
crossref_primary_10_1103_PhysRevB_92_214419
crossref_primary_10_1038_srep34065
crossref_primary_10_1364_OE_401255
crossref_primary_10_1021_jp406681j
crossref_primary_10_1039_C2TC00010E
crossref_primary_10_1007_s12613_022_2426_3
crossref_primary_10_1038_ncomms2021
crossref_primary_10_1038_srep12575
crossref_primary_10_1021_acs_jpcc_8b06906
crossref_primary_10_1039_C8TC00530C
crossref_primary_10_1063_1_4954799
crossref_primary_10_1080_01691864_2015_1095653
crossref_primary_10_1016_j_mtphys_2017_07_001
crossref_primary_10_1021_nl504612y
crossref_primary_10_5714_CL_2012_13_1_001
crossref_primary_10_1021_acsami_8b19672
crossref_primary_10_1109_MNANO_2015_2441105
crossref_primary_10_1063_1_4711776
crossref_primary_10_1063_1_4798484
crossref_primary_10_1109_JPROC_2013_2257633
crossref_primary_10_1016_j_physe_2024_116124
crossref_primary_10_1016_j_carbon_2011_09_044
crossref_primary_10_3390_nano10081503
crossref_primary_10_1088_2053_1583_2_3_034011
crossref_primary_10_1002_adfm_202211880
crossref_primary_10_1364_OE_27_033768
crossref_primary_10_1088_2053_1591_ab2e83
crossref_primary_10_1016_j_carbon_2013_09_050
crossref_primary_10_1002_adom_201600723
crossref_primary_10_1021_nl3039212
crossref_primary_10_1016_j_carbon_2020_04_096
crossref_primary_10_1039_c1jm11691f
crossref_primary_10_1039_C5RA22065C
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1109_TAP_2017_2670520
crossref_primary_10_35848_1347_4065_ac4b6c
crossref_primary_10_1002_advs_202105623
crossref_primary_10_1021_acsami_8b05932
crossref_primary_10_1016_j_carbon_2016_09_060
crossref_primary_10_1038_s41598_017_03264_0
crossref_primary_10_1002_admt_202001273
crossref_primary_10_1016_j_electacta_2019_05_039
crossref_primary_10_1039_C5NR02292D
crossref_primary_10_1002_adfm_201808909
crossref_primary_10_1016_j_eurpolymj_2017_11_050
crossref_primary_10_1016_j_apsusc_2013_12_007
crossref_primary_10_1039_c3cp55270e
crossref_primary_10_1021_nl500446s
crossref_primary_10_1021_nn400899v
crossref_primary_10_1002_adsr_202300061
crossref_primary_10_1021_cm502491n
crossref_primary_10_1016_j_bios_2018_10_047
crossref_primary_10_1073_pnas_1306508110
crossref_primary_10_1039_c3nr06517k
crossref_primary_10_1177_01445987211036828
crossref_primary_10_1016_j_talanta_2022_123697
crossref_primary_10_1039_c3cp50675d
crossref_primary_10_1063_1_4950975
crossref_primary_10_3390_s20185188
crossref_primary_10_1021_acsami_8b20766
crossref_primary_10_1038_s41528_021_00110_2
crossref_primary_10_1002_adma_201800449
crossref_primary_10_1039_C8ME00100F
crossref_primary_10_1038_am_2013_41
crossref_primary_10_1088_0022_3727_48_45_455102
crossref_primary_10_1088_0953_8984_25_15_155303
crossref_primary_10_1021_acsnano_5b02816
crossref_primary_10_1021_acsnano_7b04898
crossref_primary_10_1186_s40580_014_0015_5
crossref_primary_10_1007_s11468_025_02786_y
crossref_primary_10_1038_s41563_018_0249_4
crossref_primary_10_1021_nn406221s
crossref_primary_10_1016_j_apsusc_2018_05_131
crossref_primary_10_1007_s40820_021_00660_0
crossref_primary_10_1021_nn302193q
crossref_primary_10_1109_LED_2011_2163489
crossref_primary_10_1021_am2002873
crossref_primary_10_3390_mi10010054
crossref_primary_10_1021_acs_langmuir_3c01098
crossref_primary_10_1039_D0TB01687J
crossref_primary_10_1021_acsaelm_0c00707
crossref_primary_10_1016_j_carbon_2013_11_071
crossref_primary_10_1038_nature09866
crossref_primary_10_1002_smll_201400463
crossref_primary_10_1109_JMEMS_2014_2312714
crossref_primary_10_1002_adma_201704253
crossref_primary_10_1088_2053_1583_ab81b0
crossref_primary_10_35848_1347_4065_ad3ed2
crossref_primary_10_1007_s10973_024_13985_w
crossref_primary_10_1016_j_aca_2016_03_002
crossref_primary_10_1002_adma_201202973
crossref_primary_10_1039_c3nr33560g
crossref_primary_10_1186_1556_276X_8_473
crossref_primary_10_1016_j_mser_2014_08_002
crossref_primary_10_1088_0957_4484_25_1_014002
crossref_primary_10_1002_aenm_201902842
crossref_primary_10_1002_marc_201800246
crossref_primary_10_1021_acs_nanolett_4c03832
crossref_primary_10_1016_j_nanoen_2020_105610
crossref_primary_10_1007_s10854_012_0923_2
crossref_primary_10_1039_c2nr30330b
crossref_primary_10_9797_TSISS_2012_8_2_056
crossref_primary_10_1063_1_4824475
crossref_primary_10_1088_0957_4484_24_47_475202
crossref_primary_10_1063_1_4894082
crossref_primary_10_1088_0957_4484_27_46_462001
crossref_primary_10_1016_j_flatc_2017_06_002
crossref_primary_10_1016_j_snb_2015_11_130
crossref_primary_10_1063_1_5128050
crossref_primary_10_1002_admi_201700603
crossref_primary_10_1021_nl300948c
crossref_primary_10_1021_acsami_8b07469
crossref_primary_10_1016_j_mattod_2019_08_013
crossref_primary_10_1021_nn203054t
crossref_primary_10_1021_nn3055835
crossref_primary_10_1088_1361_6641_aa5f39
crossref_primary_10_1109_JSTQE_2024_3359185
crossref_primary_10_1007_s42823_024_00704_6
crossref_primary_10_4028_www_scientific_net_KEM_531_532_383
Cites_doi 10.1002/adma.200701069
10.1002/adma.201090021
10.1038/nature04233
10.1126/science.1184289
10.1038/nmat2291
10.1126/science.1158877
10.1021/nl903272n
10.1021/jp901426e
10.1021/nl801827v
10.1038/nature04235
10.1109/LED.2009.2020615
10.1021/nl803922m
10.1063/1.2779107
10.1038/nnano.2010.132
10.1126/science.1171245
10.1002/adma.200701059
10.1021/nl9028736
10.1021/nl803316h
10.1038/nnano.2008.115
10.1038/nature07719
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1021/nl101559n
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 3466
ExternalDocumentID 20704323
23218123
10_1021_nl101559n
a564328291
Genre Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7X8
ID FETCH-LOGICAL-a344t-8e10c334bafecff1b3d79160044aef3e06bf7fdb411aed2e2173ecfe2ab74c5d3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Sep 05 14:18:34 EDT 2025
Mon Jul 21 06:01:48 EDT 2025
Mon Jul 21 09:16:42 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Jul 01 00:42:38 EDT 2025
Thu Aug 27 13:42:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ion gel
flexible electronics
field effect transistor
Graphene
low-voltage operation
Field effect transistors
Gallium tellurides
Hole mobility
Electron mobility
Capacitance
Low field
Arrays
IV characteristic
Flexibility
Gates
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a344t-8e10c334bafecff1b3d79160044aef3e06bf7fdb411aed2e2173ecfe2ab74c5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20704323
PQID 754024102
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_754024102
pubmed_primary_20704323
pascalfrancis_primary_23218123
crossref_primary_10_1021_nl101559n
crossref_citationtrail_10_1021_nl101559n
acs_journals_10_1021_nl101559n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-08
PublicationDateYYYYMMDD 2010-09-08
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-08
  day: 08
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref17/cit17
Li X. (ref7/cit7) 2009; 324
Novikov D. S. (ref18/cit18) 2007; 91
Lee Y. (ref9/cit9) 2010; 10
Novoselov K. S. (ref2/cit2) 2005; 438
Cho J. H. (ref14/cit14) 2008; 20
Lee J. (ref16/cit16) 2009; 113
Chen F. (ref19/cit19) 2009; 9
Reina A. (ref6/cit6) 2008; 9
Lin Y.-M. (ref8/cit8) 2010; 327
Liao L. (ref13/cit13) 2010; 22
Kedzierski J. (ref10/cit10) 2009; 30
Wang S. (ref20/cit20) 2010; 10
Kim K. S. (ref5/cit5) 2009; 457
Chen J.-H. (ref11/cit11) 2007; 19
Rogers J. A. (ref4/cit4) 2008; 3
Zhang Y. (ref3/cit3) 2005; 438
Cho J. H. (ref15/cit15) 2008; 7
Lin Y.-M. (ref12/cit12) 2009; 9
Geim A. K. (ref1/cit1) 2009; 324
References_xml – volume: 20
  start-page: 686
  year: 2008
  ident: ref14/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701069
– volume: 22
  start-page: 1
  year: 2010
  ident: ref13/cit13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201090021
– volume: 438
  start-page: 197
  year: 2005
  ident: ref2/cit2
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 327
  start-page: 662
  year: 2010
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.1184289
– volume: 7
  start-page: 900
  year: 2008
  ident: ref15/cit15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2291
– volume: 324
  start-page: 1530
  year: 2009
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 10
  start-page: 490
  year: 2010
  ident: ref9/cit9
  publication-title: Nano Lett.
  doi: 10.1021/nl903272n
– volume: 113
  start-page: 8972
  year: 2009
  ident: ref16/cit16
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901426e
– volume: 9
  start-page: 30
  year: 2008
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 438
  start-page: 201
  year: 2005
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 30
  start-page: 745
  year: 2009
  ident: ref10/cit10
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/LED.2009.2020615
– volume: 9
  start-page: 1621
  year: 2009
  ident: ref19/cit19
  publication-title: Nano Lett.
  doi: 10.1021/nl803922m
– volume: 91
  start-page: 2779107
  year: 2007
  ident: ref18/cit18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2779107
– ident: ref17/cit17
  doi: 10.1038/nnano.2010.132
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref7/cit7
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 19
  start-page: 3623
  year: 2007
  ident: ref11/cit11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701059
– volume: 10
  start-page: 92
  year: 2010
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl9028736
– volume: 9
  start-page: 422
  year: 2009
  ident: ref12/cit12
  publication-title: Nano Lett.
  doi: 10.1021/nl803316h
– volume: 3
  start-page: 254
  year: 2008
  ident: ref4/cit4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.115
– volume: 457
  start-page: 706
  year: 2009
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature07719
SSID ssj0009350
Score 2.520963
Snippet A high-performance low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible polymer substrate using solution-processable,...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3464
SubjectTerms Applied sciences
Cross-disciplinary physics: materials science; rheology
Electronics
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Materials science
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Transistors
Title High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics
URI http://dx.doi.org/10.1021/nl101559n
https://www.ncbi.nlm.nih.gov/pubmed/20704323
https://www.proquest.com/docview/754024102
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEJ4gXjTG9wMfpFEPXha3D1j2aEBAE42JkuBp0-62CZEsxF0u_nqnuzyj6H3apJ2239fO9BuA6ygDxYg7xrjaEQZ94YdKOr5hNBLId2X2lP30XOt0xWOv2ivA1YoIPqO38YBaXPfjNVhnNcQXy38ar3NlXZ6VYcWdi_cgvy6m8kGLTS30hMkS9GyNZIKzYPLyFav5ZYYzrR1oTn_r5OklH5Vxqirh10_xxr-GsAvbE55J7vKFsQcFHe_D5oL64AG82xwP52X-c4C0rDqmGmjStjLWeAqSlk1wI7nEMclwLZMVSYh9vyUPw5i09YDYJzjS7Ocldfphcgjd1v1bo-NMKi04kguROnVN3ZBzoSR2ZwxVPPKQN9por9SGa7emjGciJSiVOmIa7zEcDTWTyhNhNeJHUIyHsT4BooTvMRbVlatDwZjGG5PxbR1ATg3SPb8EZXRFMNkpSZAFwRkNZnNUgpupl4JwolNuy2UMfjO9nJmOcnGO34zKS66eWSKXtPSGl4BMfR_g3rIBExnr4TgJPKSzyHBcVoLjfE3MG-NRKTjjp_8N5ww28oQD33Hr51BMP8f6AnlMqsrZOv4GzezrlQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHAAh9qUsxUIcuATipU1zrAqlLK2QKBKcIjuxJUSVItJe-HrGTtoCKoL72PIy9jzb4_cAThIXFBPuGeNrTxicizBW0gsNo4lAvCvdVXa7U209ipunylNBk2P_wmAjMqwpc4_4E3YBep72qA3vYToL85WqqFqZhnrjYUKwy50aKy5gPA6FNTFiEfpa1EagOPsWgZbfZIaDYXIVi99hpgs3zdVct8g11GWZvJ4NB-os_vjB4fi_nqzBSoE6ST13k3WY0ekGLH3hItyEZ5vx4d1P_hGQpuXKVD1NriypNe6JpGnT3UhOeExclHMkIxmxt7nkup-SK90j9kKOXLzkAjsvcbYFj83LbqPlFboLnuRCDLyapn7MuVASqzOGKp4EiCLt26_Uhmu_qkxgEiUolTphGk81HA01kyoQcSXh2zCX9lO9C0SJMGAsqSlfx4IxjecnE1pVQE4Ngr-wBGUcoqhYN1nknsQZjcZjVILT0WRFccFabsUzetNMj8embzlVxzSj8rcZH1sisrRgh5eAjFwgwpVmn09kqvvDLAoQ3CLe8VkJdnLXmBTGjVNwxvf-6s4RLLS67bvo7rpzuw-LeSpC6Pm1A5gbvA_1ISKcgSo71_4EpD7z9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB48QBTxPupRg_jgy9bNodt9FHW9D1BBn5Zkk4BYtsVtX_z1TrLbVkXR90nIMZP5Jpl8A7CjvVPUPLA2NIGwuBdxpmQQW0a1QLwr_VX29c3B2aO4eNp_qgJF9xcGB1FgT4V_xHdW3dG2Yhige3mLOhcf56MwjkCEulINh0f3Q5Jd7iuyohFjSBQ3RZ9J6HNT54Wy4osXmu7IAhfElpUsfoea3uUks3A7GKzPNHlt9Lqqkb1_43H8_2zmYKZCn-SwVJd5GDH5Akx94iRchGeX-RHcDf8TkMRxZqqWIaeO3BrPRpK4tDdSEh8T7-082UhB3K0uOW_n5NS0iLuYI8cvZaGdl6xYgsfk5OHoLKjqLwSSC9ENmoaGGedCSezOWqq4jhBNujdgaSw34YGykdVKUCqNZgajG46ChkkViWxf82UYy9u5WQWiRBwxppsqNJlgzGAcZWNXHZBTiyAwrkEdlymt7KdI_dM4o-lgjWqw29-wNKvYy10RjdZPotsD0U5J2fGTUP3Lrg8kEWE60MNrQPpqkKLFuWcUmZt2r0gjBLmIe0JWg5VSPYaN8QAVnPG1v6azBRN3x0l6dX5zuQ6TZUZCHITNDRjrvvXMJgKdrqp77f4AixL2cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Flexible+Graphene+Field+Effect+Transistors+with+Ion+Gel+Gate+Dielectrics&rft.jtitle=Nano+letters&rft.au=Kim%2C+Beom+Joon&rft.au=Jang%2C+Houk&rft.au=Lee%2C+Seoung-Ki&rft.au=Hong%2C+Byung+Hee&rft.date=2010-09-08&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=10&rft.issue=9&rft.spage=3464&rft.epage=3466&rft_id=info:doi/10.1021%2Fnl101559n&rft.externalDocID=a564328291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon