Chemical Vapor Deposition Growth of Large Single-Crystal Mono‑, Bi‑, Tri-Layer Hexagonal Boron Nitride and Their Interlayer Stacking
Two-dimensional hexagonal boron nitride (h-BN) is a wide bandgap material which has promising mechanical and optical properties. Here we report the realization of an initial nucleation density of h-BN <1 per mm2 using low-pressure chemical vapor deposition (CVD) on polycrystalline copper. This en...
Saved in:
Published in | ACS nano Vol. 11; no. 12; pp. 12057 - 12066 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.7b04841 |
Cover
Summary: | Two-dimensional hexagonal boron nitride (h-BN) is a wide bandgap material which has promising mechanical and optical properties. Here we report the realization of an initial nucleation density of h-BN <1 per mm2 using low-pressure chemical vapor deposition (CVD) on polycrystalline copper. This enabled wafer-scale CVD growth of single-crystal monolayer h-BN with a lateral size up to ∼300 μm, bilayer h-BN with a lateral size up to ∼60 μm, and trilayer h-BN with a lateral size up to ∼35 μm. Based on the large single-crystal monolayer h-BN domain, the sizes of the as-grown bi- and trilayer h-BN grains are 2 orders of magnitude larger than typical h-BN multilayer domains. In addition, we achieved coalesced h-BN films with an average grain size ∼100 μm. Various flake morphologies and their interlayer stacking configurations of bi- and trilayer h-BN domains were studied. Raman signatures of mono- and multilayer h-BN were investigated side by side in the same film. It was found that the Raman peak intensity can be used as a marker for the number of layers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.7b04841 |