Uniform Alignment of Non-π-Conjugated Species Enhances Deep Ultraviolet Optical Nonlinearity
The precision of array of laser applications and manipulation on smaller scales are limited by the so-called 200 nm wall, and breakthroughs rely on the discovery of new materials with transparency and phase matchability in the ultraviolet and deep ultraviolet region. Herein, we discover an unprecede...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 20; pp. 8093 - 8097 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.05.2019
|
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.9b03858 |
Cover
Summary: | The precision of array of laser applications and manipulation on smaller scales are limited by the so-called 200 nm wall, and breakthroughs rely on the discovery of new materials with transparency and phase matchability in the ultraviolet and deep ultraviolet region. Herein, we discover an unprecedented alignment of the asymmetric non-π-conjugated species [PO3F] in NaNH4PO3F·H2O, which allows the best uniform P–F bond orientation that generates a remarkable enhancement of the (010) in-plane anisotropy that yields the largest birefringence (obv.: 0.053) to date in the phosphate and fluorophosphate families. The substance produces second harmonic generation lasers through direct frequency doubling with incident Yb:KGW femtosecond lasers on an as-synthesized (010) wafer with a size of 14 × 10 × 2.1 mm3. According to the calculated refractive index dispersion curve, the shortest second-harmonic generation (SHG) wavelength is estimated to be 194 nm, the shortest among phosphates and monofluorophosphate. These insights may help to design other high-performance non-π-conjugated deep-UV nonlinear optical materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b03858 |