One-Step Synthesis of FA-Directing FAPbBr3 Perovskite Nanocrystals toward High-Performance Display

Hybrid organic–inorganic and all-inorganic metal halide perovskite nanocrystals (PNCs) have aroused extensive attention from both academic and industrial researchers, considering their excellent performance in optoelectronic applications. Herein, we develop a facile and time-saving strategy to synth...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 37; pp. 31603 - 31609
Main Authors Tong, Yu-Long, Zhang, Ya-Wen, Ma, Kangzhe, Cheng, Rui, Wang, Fengxiang, Chen, Su
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.09.2018
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.8b10366

Cover

More Information
Summary:Hybrid organic–inorganic and all-inorganic metal halide perovskite nanocrystals (PNCs) have aroused extensive attention from both academic and industrial researchers, considering their excellent performance in optoelectronic applications. Herein, we develop a facile and time-saving strategy to synthesize NH2CHNH2PbBr3 (NH2CHNH+, FA) PNCs at room temperature. Benefiting from this facile method, high-quality FAPbBr3 PNCs with photoluminescence quantum yield up to 76% and narrow full width at half-maxima of 20 nm can be produced on a large scale. Moreover, anion-exchange reactions run by using FAPbBr3 as a template, producing various PNCs with different anion constituents. By manipulating the ratios of two different anions, a series PNCs with various bright photoluminescence ranging from 452 to 646 nm could be done. On account of superior and adjustable photoluminescence over the visible spectral region, FAPbBr3 PNCs can be applied as a promising color-converting material in liquid-crystal display (LCD) backlight, white light-emitting diode (WLED), and inkjet printing pattern. As a proof of concept, FAPbBr3 PNCs with green emission were integrated in WLED and LCD backlight, accomplishing a color rendering index of 87.5 and a wide color gamut of 116%, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.8b10366