Exploring serial vertical interconnects for 3D ICs

Three-dimensional integrated circuits (3D ICs) offer a promising solution to overcome the on-chip communication bottleneck and improve performance over traditional two-dimensional (2D) ICs. Long interconnects can be replaced by much shorter vertical through silicon via (TSV) interconnects in 3D ICs....

Full description

Saved in:
Bibliographic Details
Published in2009 46th ACM/IEEE Design Automation Conference pp. 581 - 586
Main Author Pasricha, Sudeep
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 26.07.2009
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN9781605584973
1605584975
ISSN0738-100X
DOI10.1145/1629911.1630061

Cover

More Information
Summary:Three-dimensional integrated circuits (3D ICs) offer a promising solution to overcome the on-chip communication bottleneck and improve performance over traditional two-dimensional (2D) ICs. Long interconnects can be replaced by much shorter vertical through silicon via (TSV) interconnects in 3D ICs. This enables faster and more power efficient inter-core communication across multiple silicon layers. However, 3D IC technology also faces challenges due to higher power densities and routing congestion due to TSV pads distributed on each layer. In this paper, serialization of vertical TSV interconnects in 3D ICs is proposed as one way to address these challenges. Such serialization reduces the interconnect TSV footprint on each layer. This can lead to a better thermal TSV distribution resulting in lower peak temperatures, as well as more efficient core layout across multiple layers due to the reduced congestion. Experiments with several 3D multi-core benchmarks indicate clear benefits of serialization. For instance, a 4:1 serialization of TSV interconnects can save more than 70% of TSV area footprint at a negligible performance and power overhead at the 65nm technology node.
ISBN:9781605584973
1605584975
ISSN:0738-100X
DOI:10.1145/1629911.1630061