Engineering of Nucleobase-Functionalized Coassembled Hydrogel to Study Cellular Behavior
Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, th...
Saved in:
Published in | ACS applied bio materials Vol. 8; no. 5; pp. 3983 - 3994 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-6422 2576-6422 |
DOI | 10.1021/acsabm.5c00134 |
Cover
Abstract | Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live–dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells. |
---|---|
AbstractList | Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells. Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells.Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells. |
Author | Acharyya, Arka Bhowmik, Sourav Das, Apurba K. |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Sourav surname: Bhowmik fullname: Bhowmik, Sourav – sequence: 2 givenname: Arka surname: Acharyya fullname: Acharyya, Arka – sequence: 3 givenname: Apurba K. orcidid: 0000-0002-8141-6854 surname: Das fullname: Das, Apurba K. email: apurba.das@iiti.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40296532$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1Lw0AQhhep2Fp79Sg5ipC6u9l8HTW0Vih6UMFbmOxOakqSrbtZof56I6nixdO8DM87DM8pGbW6RULOGZ0zytk1SAtFMw8lpSwQR2TCwzjyI8H56E8ek5m1W0oppzRgSXpCxoLyNAoDPiGvi3ZTtYimajeeLr0HJ2vUBVj0l66VXaVbqKtPVF6mwVpsirrPq70yeoO112nvqXNq72VY164G493iG3xU2pyR4xJqi7PDnJKX5eI5W_nrx7v77GbtA0_izheRFDJWDGMFcZJyCmWSpkyGSmKBIoyAhyJRFBkkaZQICioVcVkwAEDFRTAll8PdndHvDm2XN5WV_TfQonY2D1gaRYwKkfToxQF1RYMq35mqAbPPf2z0wHwApNHWGix_EUbzb-P5YDw_GO8LV0Oh3-db7Uwvy_4HfwHhoIKi |
Cites_doi | 10.1021/accountsmr.3c00112 10.1021/acs.chemmater.9b01882 10.1007/s11626-998-0130-x 10.1039/b919449p 10.1021/acsami.8b01725 10.1039/D4NR01149J 10.1021/acs.biomac.8b00279 10.1002/mabi.202100365 10.1021/acsabm.3c00582 10.1039/D2CC06881H 10.1021/acsami.0c17149 10.1002/anie.202114471 10.1039/D0CC03962D 10.1021/acsabm.9b00669 10.1073/pnas.082065899 10.1021/la900746w 10.1021/ct400341p 10.1021/acsbiomaterials.3c00014 10.1038/nchem.2122 10.1016/j.molliq.2024.125034 10.1021/acs.bioconjchem.3c00200 10.1021/acsbiomaterials.0c00854 10.1002/chem.202402687 10.1021/jacs.3c04872 10.1002/anie.201709184 10.1039/D0RA01790F 10.1021/acsabm.2c01041 10.1039/C5CC00501A 10.1126/science.aal5005 10.1002/chem.200801475 10.1021/acsbiomaterials.9b01829 10.1371/journal.pone.0116379 10.1038/s41598-019-57342-6 10.1039/D1CS01064F 10.1002/adhm.202000905 10.1039/D0BM00134A 10.1021/acsabm.0c00252 10.1042/EBC20180038 10.1016/j.jtv.2009.11.004 10.1021/acsami.3c18436 10.1021/acs.chemmater.3c00308 10.1021/acsbiomaterials.9b00941 10.1039/C7CC07806D 10.1039/D2PY00920J 10.1039/C7CC04187J 10.1002/adma.201403339 10.1021/acsbiomaterials.2c01051 10.1021/acs.langmuir.7b01283 10.1021/acsabm.2c00912 10.1021/jacs.8b13363 10.1016/j.biomaterials.2019.119667 10.1039/C6RA27030A 10.1021/acsabm.9b00424 10.1021/acs.langmuir.3c00392 10.1039/C7CC09051J 10.1021/acs.accounts.2c00135 10.1021/acsabm.9b00125 10.1126/science.aat6141 10.1002/mabi.202100232 10.1021/acsabm.2c00188 10.3109/10715762.2011.653969 10.1021/acs.biomac.7b00876 10.1002/pola.20976 10.1039/D0CB00219D 10.1021/jacs.2c02096 10.1002/jbm.a.35098 10.1021/ma051476b 10.1021/acs.chemrev.0c01334 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsabm.5c00134 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 3994 |
ExternalDocumentID | 40296532 10_1021_acsabm_5c00134 d036795197 |
Genre | Journal Article |
GroupedDBID | 53G ABBLG ABJNI ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX ABLBI CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a287t-46c4c7d1e7da78920af8991c5dcebe456a2548d0e1a896840ad947fb1aaaed243 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Wed Jul 02 04:45:24 EDT 2025 Mon Jul 21 05:50:24 EDT 2025 Tue Jul 01 04:44:25 EDT 2025 Tue May 20 03:10:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | coassembled hydrogel biocompatible cytoskeletal staining cell proliferation cell adhesion |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a287t-46c4c7d1e7da78920af8991c5dcebe456a2548d0e1a896840ad947fb1aaaed243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8141-6854 |
PMID | 40296532 |
PQID | 3196610448 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3196610448 pubmed_primary_40296532 crossref_primary_10_1021_acsabm_5c00134 acs_journals_10_1021_acsabm_5c00134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-19 |
PublicationDateYYYYMMDD | 2025-05-19 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1021/accountsmr.3c00112 – ident: ref21/cit21 doi: 10.1021/acs.chemmater.9b01882 – ident: ref62/cit62 doi: 10.1007/s11626-998-0130-x – ident: ref57/cit57 doi: 10.1039/b919449p – ident: ref32/cit32 doi: 10.1021/acsami.8b01725 – ident: ref42/cit42 doi: 10.1039/D4NR01149J – ident: ref33/cit33 doi: 10.1021/acs.biomac.8b00279 – ident: ref59/cit59 doi: 10.1002/mabi.202100365 – ident: ref43/cit43 doi: 10.1021/acsabm.3c00582 – ident: ref11/cit11 doi: 10.1039/D2CC06881H – ident: ref12/cit12 doi: 10.1021/acsami.0c17149 – ident: ref52/cit52 doi: 10.1002/anie.202114471 – ident: ref55/cit55 doi: 10.1039/D0CC03962D – ident: ref66/cit66 doi: 10.1021/acsabm.9b00669 – ident: ref4/cit4 doi: 10.1073/pnas.082065899 – ident: ref44/cit44 doi: 10.1021/la900746w – ident: ref47/cit47 doi: 10.1021/ct400341p – ident: ref63/cit63 doi: 10.1021/acsbiomaterials.3c00014 – ident: ref45/cit45 doi: 10.1038/nchem.2122 – ident: ref25/cit25 doi: 10.1016/j.molliq.2024.125034 – ident: ref27/cit27 doi: 10.1021/acs.bioconjchem.3c00200 – ident: ref58/cit58 doi: 10.1021/acsbiomaterials.0c00854 – ident: ref29/cit29 doi: 10.1002/chem.202402687 – ident: ref37/cit37 doi: 10.1021/jacs.3c04872 – ident: ref48/cit48 doi: 10.1002/anie.201709184 – ident: ref56/cit56 doi: 10.1039/D0RA01790F – ident: ref41/cit41 doi: 10.1021/acsabm.2c01041 – ident: ref50/cit50 doi: 10.1039/C5CC00501A – ident: ref2/cit2 doi: 10.1126/science.aal5005 – ident: ref22/cit22 doi: 10.1002/chem.200801475 – ident: ref34/cit34 doi: 10.1021/acsbiomaterials.9b01829 – ident: ref49/cit49 doi: 10.1371/journal.pone.0116379 – ident: ref8/cit8 doi: 10.1038/s41598-019-57342-6 – ident: ref9/cit9 doi: 10.1039/D1CS01064F – ident: ref68/cit68 doi: 10.1002/adhm.202000905 – ident: ref26/cit26 doi: 10.1039/D0BM00134A – ident: ref24/cit24 doi: 10.1021/acsabm.0c00252 – ident: ref15/cit15 doi: 10.1042/EBC20180038 – ident: ref67/cit67 doi: 10.1016/j.jtv.2009.11.004 – ident: ref51/cit51 doi: 10.1021/acsami.3c18436 – ident: ref28/cit28 doi: 10.1021/acs.chemmater.3c00308 – ident: ref36/cit36 doi: 10.1021/acsbiomaterials.9b00941 – ident: ref10/cit10 doi: 10.1039/C7CC07806D – ident: ref16/cit16 doi: 10.1039/D2PY00920J – ident: ref23/cit23 doi: 10.1039/C7CC04187J – ident: ref46/cit46 doi: 10.1002/adma.201403339 – ident: ref40/cit40 doi: 10.1021/acsbiomaterials.2c01051 – ident: ref61/cit61 doi: 10.1021/acs.langmuir.7b01283 – ident: ref53/cit53 doi: 10.1021/acsabm.2c00912 – ident: ref35/cit35 doi: 10.1021/jacs.8b13363 – ident: ref64/cit64 doi: 10.1016/j.biomaterials.2019.119667 – ident: ref54/cit54 doi: 10.1039/C6RA27030A – ident: ref30/cit30 doi: 10.1021/acsabm.9b00424 – ident: ref13/cit13 doi: 10.1021/acs.langmuir.3c00392 – ident: ref14/cit14 doi: 10.1039/C7CC09051J – ident: ref17/cit17 doi: 10.1021/acs.accounts.2c00135 – ident: ref6/cit6 doi: 10.1021/acsabm.9b00125 – ident: ref3/cit3 doi: 10.1126/science.aat6141 – ident: ref20/cit20 doi: 10.1002/mabi.202100232 – ident: ref5/cit5 doi: 10.1021/acsabm.2c00188 – ident: ref65/cit65 doi: 10.3109/10715762.2011.653969 – ident: ref38/cit38 doi: 10.1021/acs.biomac.7b00876 – ident: ref18/cit18 doi: 10.1002/pola.20976 – ident: ref31/cit31 doi: 10.1021/acsabm.2c00188 – ident: ref39/cit39 doi: 10.1039/D0CB00219D – ident: ref7/cit7 doi: 10.1021/jacs.2c02096 – ident: ref69/cit69 doi: 10.1002/jbm.a.35098 – ident: ref19/cit19 doi: 10.1021/ma051476b – ident: ref60/cit60 doi: 10.1021/acs.chemrev.0c01334 |
SSID | ssj0002003189 |
Score | 2.3025203 |
Snippet | Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3983 |
SubjectTerms | A549 Cells Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Cell Proliferation - drug effects Cell Survival - drug effects Humans Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogels - pharmacology Materials Testing Molecular Structure Particle Size Tissue Engineering |
Title | Engineering of Nucleobase-Functionalized Coassembled Hydrogel to Study Cellular Behavior |
URI | http://dx.doi.org/10.1021/acsabm.5c00134 https://www.ncbi.nlm.nih.gov/pubmed/40296532 https://www.proquest.com/docview/3196610448 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2576-6422 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002003189 issn: 2576-6422 databaseCode: ACS dateStart: 20180716 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrCh4Su1uN69jKZYi2IsWeguzj4jYNtKkh_bXu5OktVqK3hIIyzIzm_nmsd8Qcid9GQDzwAmwrUbgvRycAO8YqMtAs4Yf5ndhnrtepyee-m7_O9_xu4LP2QOoFOSw5ipEK2KTbHEvYBhmNVsvi2wKz40TsS4CaMeCaj5naFxZAv2QSn_6oTXgMncy7b2C8SjNuQmxt-SjNslkTc1WmRv_3P8-2S2RJm0WpnFANszokOws8Q8ekf7SG01i2kVy4wQdm9O2_q5IE77PjKatxIJsM5QD-9yZ6nHyZgY0Syi2IU5pywwG2M5KS7bF8THptR9fWx2nHLXggA2ZMkd4SihfM-Nr8IOQ1yFG5SlXK6tlC7LABpKBrhsGQYj8MKBD4ceSAYDRXDROSGWUjMwZoVICa8QxaN83QtXjEIeYC-1yZaGjhQtVcmtFEpVHJY3yKjhnUSGnqJRTldzP1RN9Frwba7-8mWsvskcD6x0wMskkjfDvYtGhDUCr5LRQ62ItGzaHntvg5__azQXZ5jj3F1lbw0tSycYTc2XBSCavczv8AhZz2HU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58HNSD70d9rih4StukmyY5SrFUbYtgC72FfUXE2kiTHvTXO5Ok9YWgtySEYbKzm_lmZ_YbgHPpSV_YdWH5VFbD6VwOdYC3jKhKX9s1L8jOwnS69Vaf3wzcwRxUpmdhUIkEJSVZEv-DXcCu4DMhn8uuItDC52Exo0EhLNS4n22qONkcJchLONpCbO1MiRp_iCB3pJKv7ugXjJn5muYa3M20zEpMnsqTVJbV2zcCx398xjqsFriTXeYTZQPmzGgTVj6xEW7B4NMdiyPWJarjmNyc1UTvl28aPr4ZzRoxQm7zLId43XrV4_jBDFkaMypKfGUNMxxScSsruBfH29BvXvUaLatovGAJDKBSi9cVV562jaeF5wdOVURkSuVqhTZHyCUwrPR11djCD4gtRuiAe5G0hRBGO7y2AwujeGT2gEkp7FoUCe15hqtqFFBLc65dRyGQRPBQgjMckrBYOEmY5cQdO8zHKSzGqQQXUyuFLzkLx69vnk6NGOJCoeyHGJl4koT0r0GsiOFoCXZz685kYRAd1N2as_8nbU5gqdXrtMP2dff2AJYd6ghMfK7BISyk44k5QpiSyuNsar4D0BHg4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPTB-6jnioJPqU26aZJHqZZ6FUGFvoW9ImLbSJM-tL_emSQtVSnoWxLCstmZyXyzO_MNwLn0pC_smrB8SqvhVJdDHeAtIyrS13bVC7JamMdWrfnK79puu6jjploYnESCIyXZIT5Z9aeOCoYB-xKfC9ktu4qAC5-HRZf43wgP1Z8nGytOpqcEewlLW4ivnTFZ468hyCWp5LtLmoEzM3_TWIOXyUyzNJOP8iCVZTX6QeL4z09Zh9UCf7KrXGE2YM70NmFlipVwC9pTdyyOWIsoj2Nyd1YDvWC-efg-MprVY4Tepis7eN0c6n78ZjosjRklJw5Z3XQ6lOTKCg7G_ja8Nm5e6k2raMBgCQykUovXFFeeto2nhecHTkVEJFLlaoWyR-glMLz0dcXYwg-INUbogHuRtIUQRju8ugMLvbhn9oBJKexqFAnteYarShRQa3OuXUchoEQQUYIzXJKwMKAkzM7GHTvM1yks1qkEF2NJhZ85G8fMN0_HggzRYOgURPRMPEhC-ucgZsSwtAS7uYQnY2EwHdTcqrP_p9mcwNLTdSN8uG3dH8CyQ42BidY1OISFtD8wR4hWUnmcaecXG6XjWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Nucleobase-Functionalized+Coassembled+Hydrogel+to+Study+Cellular+Behavior&rft.jtitle=ACS+applied+bio+materials&rft.au=Bhowmik%2C+Sourav&rft.au=Acharyya%2C+Arka&rft.au=Das%2C+Apurba+K&rft.date=2025-05-19&rft.eissn=2576-6422&rft.volume=8&rft.issue=5&rft.spage=3983&rft_id=info:doi/10.1021%2Facsabm.5c00134&rft_id=info%3Apmid%2F40296532&rft.externalDocID=40296532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |