Engineering of Nucleobase-Functionalized Coassembled Hydrogel to Study Cellular Behavior

Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, th...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 8; no. 5; pp. 3983 - 3994
Main Authors Bhowmik, Sourav, Acharyya, Arka, Das, Apurba K.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.05.2025
Subjects
Online AccessGet full text
ISSN2576-6422
2576-6422
DOI10.1021/acsabm.5c00134

Cover

Abstract Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live–dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells.
AbstractList Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells.
Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells.Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live-dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells.
Author Acharyya, Arka
Bhowmik, Sourav
Das, Apurba K.
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Sourav
  surname: Bhowmik
  fullname: Bhowmik, Sourav
– sequence: 2
  givenname: Arka
  surname: Acharyya
  fullname: Acharyya, Arka
– sequence: 3
  givenname: Apurba K.
  orcidid: 0000-0002-8141-6854
  surname: Das
  fullname: Das, Apurba K.
  email: apurba.das@iiti.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40296532$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1Lw0AQhhep2Fp79Sg5ipC6u9l8HTW0Vih6UMFbmOxOakqSrbtZof56I6nixdO8DM87DM8pGbW6RULOGZ0zytk1SAtFMw8lpSwQR2TCwzjyI8H56E8ek5m1W0oppzRgSXpCxoLyNAoDPiGvi3ZTtYimajeeLr0HJ2vUBVj0l66VXaVbqKtPVF6mwVpsirrPq70yeoO112nvqXNq72VY164G493iG3xU2pyR4xJqi7PDnJKX5eI5W_nrx7v77GbtA0_izheRFDJWDGMFcZJyCmWSpkyGSmKBIoyAhyJRFBkkaZQICioVcVkwAEDFRTAll8PdndHvDm2XN5WV_TfQonY2D1gaRYwKkfToxQF1RYMq35mqAbPPf2z0wHwApNHWGix_EUbzb-P5YDw_GO8LV0Oh3-db7Uwvy_4HfwHhoIKi
Cites_doi 10.1021/accountsmr.3c00112
10.1021/acs.chemmater.9b01882
10.1007/s11626-998-0130-x
10.1039/b919449p
10.1021/acsami.8b01725
10.1039/D4NR01149J
10.1021/acs.biomac.8b00279
10.1002/mabi.202100365
10.1021/acsabm.3c00582
10.1039/D2CC06881H
10.1021/acsami.0c17149
10.1002/anie.202114471
10.1039/D0CC03962D
10.1021/acsabm.9b00669
10.1073/pnas.082065899
10.1021/la900746w
10.1021/ct400341p
10.1021/acsbiomaterials.3c00014
10.1038/nchem.2122
10.1016/j.molliq.2024.125034
10.1021/acs.bioconjchem.3c00200
10.1021/acsbiomaterials.0c00854
10.1002/chem.202402687
10.1021/jacs.3c04872
10.1002/anie.201709184
10.1039/D0RA01790F
10.1021/acsabm.2c01041
10.1039/C5CC00501A
10.1126/science.aal5005
10.1002/chem.200801475
10.1021/acsbiomaterials.9b01829
10.1371/journal.pone.0116379
10.1038/s41598-019-57342-6
10.1039/D1CS01064F
10.1002/adhm.202000905
10.1039/D0BM00134A
10.1021/acsabm.0c00252
10.1042/EBC20180038
10.1016/j.jtv.2009.11.004
10.1021/acsami.3c18436
10.1021/acs.chemmater.3c00308
10.1021/acsbiomaterials.9b00941
10.1039/C7CC07806D
10.1039/D2PY00920J
10.1039/C7CC04187J
10.1002/adma.201403339
10.1021/acsbiomaterials.2c01051
10.1021/acs.langmuir.7b01283
10.1021/acsabm.2c00912
10.1021/jacs.8b13363
10.1016/j.biomaterials.2019.119667
10.1039/C6RA27030A
10.1021/acsabm.9b00424
10.1021/acs.langmuir.3c00392
10.1039/C7CC09051J
10.1021/acs.accounts.2c00135
10.1021/acsabm.9b00125
10.1126/science.aat6141
10.1002/mabi.202100232
10.1021/acsabm.2c00188
10.3109/10715762.2011.653969
10.1021/acs.biomac.7b00876
10.1002/pola.20976
10.1039/D0CB00219D
10.1021/jacs.2c02096
10.1002/jbm.a.35098
10.1021/ma051476b
10.1021/acs.chemrev.0c01334
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsabm.5c00134
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 3994
ExternalDocumentID 40296532
10_1021_acsabm_5c00134
d036795197
Genre Journal Article
GroupedDBID 53G
ABBLG
ABJNI
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a287t-46c4c7d1e7da78920af8991c5dcebe456a2548d0e1a896840ad947fb1aaaed243
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Wed Jul 02 04:45:24 EDT 2025
Mon Jul 21 05:50:24 EDT 2025
Tue Jul 01 04:44:25 EDT 2025
Tue May 20 03:10:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords coassembled hydrogel
biocompatible
cytoskeletal staining
cell proliferation
cell adhesion
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-46c4c7d1e7da78920af8991c5dcebe456a2548d0e1a896840ad947fb1aaaed243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8141-6854
PMID 40296532
PQID 3196610448
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3196610448
pubmed_primary_40296532
crossref_primary_10_1021_acsabm_5c00134
acs_journals_10_1021_acsabm_5c00134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-19
PublicationDateYYYYMMDD 2025-05-19
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1021/accountsmr.3c00112
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.9b01882
– ident: ref62/cit62
  doi: 10.1007/s11626-998-0130-x
– ident: ref57/cit57
  doi: 10.1039/b919449p
– ident: ref32/cit32
  doi: 10.1021/acsami.8b01725
– ident: ref42/cit42
  doi: 10.1039/D4NR01149J
– ident: ref33/cit33
  doi: 10.1021/acs.biomac.8b00279
– ident: ref59/cit59
  doi: 10.1002/mabi.202100365
– ident: ref43/cit43
  doi: 10.1021/acsabm.3c00582
– ident: ref11/cit11
  doi: 10.1039/D2CC06881H
– ident: ref12/cit12
  doi: 10.1021/acsami.0c17149
– ident: ref52/cit52
  doi: 10.1002/anie.202114471
– ident: ref55/cit55
  doi: 10.1039/D0CC03962D
– ident: ref66/cit66
  doi: 10.1021/acsabm.9b00669
– ident: ref4/cit4
  doi: 10.1073/pnas.082065899
– ident: ref44/cit44
  doi: 10.1021/la900746w
– ident: ref47/cit47
  doi: 10.1021/ct400341p
– ident: ref63/cit63
  doi: 10.1021/acsbiomaterials.3c00014
– ident: ref45/cit45
  doi: 10.1038/nchem.2122
– ident: ref25/cit25
  doi: 10.1016/j.molliq.2024.125034
– ident: ref27/cit27
  doi: 10.1021/acs.bioconjchem.3c00200
– ident: ref58/cit58
  doi: 10.1021/acsbiomaterials.0c00854
– ident: ref29/cit29
  doi: 10.1002/chem.202402687
– ident: ref37/cit37
  doi: 10.1021/jacs.3c04872
– ident: ref48/cit48
  doi: 10.1002/anie.201709184
– ident: ref56/cit56
  doi: 10.1039/D0RA01790F
– ident: ref41/cit41
  doi: 10.1021/acsabm.2c01041
– ident: ref50/cit50
  doi: 10.1039/C5CC00501A
– ident: ref2/cit2
  doi: 10.1126/science.aal5005
– ident: ref22/cit22
  doi: 10.1002/chem.200801475
– ident: ref34/cit34
  doi: 10.1021/acsbiomaterials.9b01829
– ident: ref49/cit49
  doi: 10.1371/journal.pone.0116379
– ident: ref8/cit8
  doi: 10.1038/s41598-019-57342-6
– ident: ref9/cit9
  doi: 10.1039/D1CS01064F
– ident: ref68/cit68
  doi: 10.1002/adhm.202000905
– ident: ref26/cit26
  doi: 10.1039/D0BM00134A
– ident: ref24/cit24
  doi: 10.1021/acsabm.0c00252
– ident: ref15/cit15
  doi: 10.1042/EBC20180038
– ident: ref67/cit67
  doi: 10.1016/j.jtv.2009.11.004
– ident: ref51/cit51
  doi: 10.1021/acsami.3c18436
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.3c00308
– ident: ref36/cit36
  doi: 10.1021/acsbiomaterials.9b00941
– ident: ref10/cit10
  doi: 10.1039/C7CC07806D
– ident: ref16/cit16
  doi: 10.1039/D2PY00920J
– ident: ref23/cit23
  doi: 10.1039/C7CC04187J
– ident: ref46/cit46
  doi: 10.1002/adma.201403339
– ident: ref40/cit40
  doi: 10.1021/acsbiomaterials.2c01051
– ident: ref61/cit61
  doi: 10.1021/acs.langmuir.7b01283
– ident: ref53/cit53
  doi: 10.1021/acsabm.2c00912
– ident: ref35/cit35
  doi: 10.1021/jacs.8b13363
– ident: ref64/cit64
  doi: 10.1016/j.biomaterials.2019.119667
– ident: ref54/cit54
  doi: 10.1039/C6RA27030A
– ident: ref30/cit30
  doi: 10.1021/acsabm.9b00424
– ident: ref13/cit13
  doi: 10.1021/acs.langmuir.3c00392
– ident: ref14/cit14
  doi: 10.1039/C7CC09051J
– ident: ref17/cit17
  doi: 10.1021/acs.accounts.2c00135
– ident: ref6/cit6
  doi: 10.1021/acsabm.9b00125
– ident: ref3/cit3
  doi: 10.1126/science.aat6141
– ident: ref20/cit20
  doi: 10.1002/mabi.202100232
– ident: ref5/cit5
  doi: 10.1021/acsabm.2c00188
– ident: ref65/cit65
  doi: 10.3109/10715762.2011.653969
– ident: ref38/cit38
  doi: 10.1021/acs.biomac.7b00876
– ident: ref18/cit18
  doi: 10.1002/pola.20976
– ident: ref31/cit31
  doi: 10.1021/acsabm.2c00188
– ident: ref39/cit39
  doi: 10.1039/D0CB00219D
– ident: ref7/cit7
  doi: 10.1021/jacs.2c02096
– ident: ref69/cit69
  doi: 10.1002/jbm.a.35098
– ident: ref19/cit19
  doi: 10.1021/ma051476b
– ident: ref60/cit60
  doi: 10.1021/acs.chemrev.0c01334
SSID ssj0002003189
Score 2.3025203
Snippet Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3983
SubjectTerms A549 Cells
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Cell Proliferation - drug effects
Cell Survival - drug effects
Humans
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogels - pharmacology
Materials Testing
Molecular Structure
Particle Size
Tissue Engineering
Title Engineering of Nucleobase-Functionalized Coassembled Hydrogel to Study Cellular Behavior
URI http://dx.doi.org/10.1021/acsabm.5c00134
https://www.ncbi.nlm.nih.gov/pubmed/40296532
https://www.proquest.com/docview/3196610448
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2576-6422
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002003189
  issn: 2576-6422
  databaseCode: ACS
  dateStart: 20180716
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrCh4Su1uN69jKZYi2IsWeguzj4jYNtKkh_bXu5OktVqK3hIIyzIzm_nmsd8Qcid9GQDzwAmwrUbgvRycAO8YqMtAs4Yf5ndhnrtepyee-m7_O9_xu4LP2QOoFOSw5ipEK2KTbHEvYBhmNVsvi2wKz40TsS4CaMeCaj5naFxZAv2QSn_6oTXgMncy7b2C8SjNuQmxt-SjNslkTc1WmRv_3P8-2S2RJm0WpnFANszokOws8Q8ekf7SG01i2kVy4wQdm9O2_q5IE77PjKatxIJsM5QD-9yZ6nHyZgY0Syi2IU5pywwG2M5KS7bF8THptR9fWx2nHLXggA2ZMkd4SihfM-Nr8IOQ1yFG5SlXK6tlC7LABpKBrhsGQYj8MKBD4ceSAYDRXDROSGWUjMwZoVICa8QxaN83QtXjEIeYC-1yZaGjhQtVcmtFEpVHJY3yKjhnUSGnqJRTldzP1RN9Frwba7-8mWsvskcD6x0wMskkjfDvYtGhDUCr5LRQ62ItGzaHntvg5__azQXZ5jj3F1lbw0tSycYTc2XBSCavczv8AhZz2HU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58HNSD70d9rih4StukmyY5SrFUbYtgC72FfUXE2kiTHvTXO5Ok9YWgtySEYbKzm_lmZ_YbgHPpSV_YdWH5VFbD6VwOdYC3jKhKX9s1L8jOwnS69Vaf3wzcwRxUpmdhUIkEJSVZEv-DXcCu4DMhn8uuItDC52Exo0EhLNS4n22qONkcJchLONpCbO1MiRp_iCB3pJKv7ugXjJn5muYa3M20zEpMnsqTVJbV2zcCx398xjqsFriTXeYTZQPmzGgTVj6xEW7B4NMdiyPWJarjmNyc1UTvl28aPr4ZzRoxQm7zLId43XrV4_jBDFkaMypKfGUNMxxScSsruBfH29BvXvUaLatovGAJDKBSi9cVV562jaeF5wdOVURkSuVqhTZHyCUwrPR11djCD4gtRuiAe5G0hRBGO7y2AwujeGT2gEkp7FoUCe15hqtqFFBLc65dRyGQRPBQgjMckrBYOEmY5cQdO8zHKSzGqQQXUyuFLzkLx69vnk6NGOJCoeyHGJl4koT0r0GsiOFoCXZz685kYRAd1N2as_8nbU5gqdXrtMP2dff2AJYd6ghMfK7BISyk44k5QpiSyuNsar4D0BHg4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPTB-6jnioJPqU26aZJHqZZ6FUGFvoW9ImLbSJM-tL_emSQtVSnoWxLCstmZyXyzO_MNwLn0pC_smrB8SqvhVJdDHeAtIyrS13bVC7JamMdWrfnK79puu6jjploYnESCIyXZIT5Z9aeOCoYB-xKfC9ktu4qAC5-HRZf43wgP1Z8nGytOpqcEewlLW4ivnTFZ468hyCWp5LtLmoEzM3_TWIOXyUyzNJOP8iCVZTX6QeL4z09Zh9UCf7KrXGE2YM70NmFlipVwC9pTdyyOWIsoj2Nyd1YDvWC-efg-MprVY4Tepis7eN0c6n78ZjosjRklJw5Z3XQ6lOTKCg7G_ja8Nm5e6k2raMBgCQykUovXFFeeto2nhecHTkVEJFLlaoWyR-glMLz0dcXYwg-INUbogHuRtIUQRju8ugMLvbhn9oBJKexqFAnteYarShRQa3OuXUchoEQQUYIzXJKwMKAkzM7GHTvM1yks1qkEF2NJhZ85G8fMN0_HggzRYOgURPRMPEhC-ucgZsSwtAS7uYQnY2EwHdTcqrP_p9mcwNLTdSN8uG3dH8CyQ42BidY1OISFtD8wR4hWUnmcaecXG6XjWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Nucleobase-Functionalized+Coassembled+Hydrogel+to+Study+Cellular+Behavior&rft.jtitle=ACS+applied+bio+materials&rft.au=Bhowmik%2C+Sourav&rft.au=Acharyya%2C+Arka&rft.au=Das%2C+Apurba+K&rft.date=2025-05-19&rft.eissn=2576-6422&rft.volume=8&rft.issue=5&rft.spage=3983&rft_id=info:doi/10.1021%2Facsabm.5c00134&rft_id=info%3Apmid%2F40296532&rft.externalDocID=40296532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon