Engineering of Nucleobase-Functionalized Coassembled Hydrogel to Study Cellular Behavior
Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, th...
Saved in:
Published in | ACS applied bio materials Vol. 8; no. 5; pp. 3983 - 3994 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-6422 2576-6422 |
DOI | 10.1021/acsabm.5c00134 |
Cover
Summary: | Hydrogels derived from self-assembling peptides provide considerable benefits in tissue engineering including their biocompatibility and extensive molecular diversity. Short peptides are especially advantageous due to their ease of production, ability to self-assemble, and repeatability. However, their application is currently limited owing to possible toxicity resulting from the chemical modifications required for self-assembly and the coarse gelation conditions. Nucleobase-functionalized derivatives provide an opportunity to use naturally obtained species to minimize cytotoxicity. Therefore, nucleobase-functionalized hydrogels are currently attracting significant interest due to their varied architectures. Herein, we have synthesized a guanine-functionalized alanine derivative and investigated the formation of a coassembled hydrogel with guanosine. The development of the nucleic acid secondary structure within the coassembled hydrogel is studied using circular dichroism and wide-angle powder X-ray diffraction experiments. The thermoreversible nature of the coassembled hydrogel is explored. The biocompatibility of the coassembled hydrogel is evaluated by performing the MTT assay. The coassembled hydrogel is used for cell growth, and 2D cell cultures are carried out on fibroblast McCoy and epithelial A549 cell lines. Live–dead cell imaging is performed by staining with fluorescein diacetate and propidium iodide. The cell proliferation is studied over different time periods using the Alamar Blue assay. Cytoskeletal staining is performed on both cell lines to determine the impact of the coassembled hydrogel on the cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.5c00134 |