Accurate Reliability Evaluation and Enhancement via Probabilistic Transfer Matrices

Soft errors are an increasingly serious problem for logic circuits. To estimate the effects of soft errors on such circuits, we develop a general computational framework based on probabilistic transfer matrices (PTMs). In particular, we apply them to evaluate circuit reliability in the presence of s...

Full description

Saved in:
Bibliographic Details
Published inDesign, Automation and Test in Europe pp. 282 - 287
Main Authors Krishnaswamy, Smita, Viamontes, George F., Markov, Igor L., Hayes, John P.
Format Conference Proceeding
LanguageEnglish
Published Washington, DC, USA IEEE Computer Society 07.03.2005
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN9780769522883
0769522882
ISSN1530-1591
DOI10.1109/DATE.2005.47

Cover

More Information
Summary:Soft errors are an increasingly serious problem for logic circuits. To estimate the effects of soft errors on such circuits, we develop a general computational framework based on probabilistic transfer matrices (PTMs). In particular, we apply them to evaluate circuit reliability in the presence of soft errors, which involves combining the PTMs of gates to form an overall circuit PTM. Information such as output probabilities, the overall probability of error, and signal observability can then be extracted from the circuit PTM. We employ algebraic decision diagrams (ADDs) to improve the efficiency of PTM operations. A particularly challenging technical problem, solved in our work, is to simultaneously extend tensor products and matrix multiplication in terms of ADDs to non-square matrices. Our PTM-based method enables accurate evaluation of reliability for moderately large circuits and can be extended by circuit partitioning. To demonstrate the power of the PTM approach, we apply it to several problems in fault-tolerant design and reliability improvement.
Bibliography:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780769522883
0769522882
ISSN:1530-1591
DOI:10.1109/DATE.2005.47