Computational Probability Applications
This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is...
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook Book Publication |
| Language | English |
| Published |
Cham
Springer Nature
2016
Springer Springer International Publishing AG Springer International Publishing |
| Edition | 1 |
| Series | International Series in Operations Research & Management Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319433172 9783319433172 3319433156 9783319433158 |
| ISSN | 0884-8289 2214-7934 |
| DOI | 10.1007/978-3-319-43317-2 |
Cover
| Summary: | This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is unified by the use of A Probability Programming Language (APPL) to achieve the modeling objectives. APPL, as a research tool, enables a probabilist or statistician the ability to explore new ideas, methods, and models. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. Computational Probability Applications is comprised of fifteen chapters, each presenting a specific application of computational probability using the APPL modeling and computer language. The chapter topics include using inverse gamma as a survival distribution, linear approximations of probability density functions, and also moment-ratio diagrams for univariate distributions. These works highlight interesting examples, often done by undergraduate students and graduate students that can serve as templates for future work. In addition, this book should appeal to researchers and practitioners in a range of fields including probability, statistics, engineering, finance, neuroscience, and economics |
|---|---|
| Bibliography: | Includes bibliographical references (p. 239-248) and index |
| ISBN: | 3319433172 9783319433172 3319433156 9783319433158 |
| ISSN: | 0884-8289 2214-7934 |
| DOI: | 10.1007/978-3-319-43317-2 |