50 GFlops molecular dynamics on the Connection Machine 5

The authors present timings and performances numbers for a new short range three dimensional (3-D) molecular dynamics (MD) code, SPaSM, on the Connection Machine-5 (CM-5). They demonstrate that runs with more than 10/sup 8/ particles are now possible on massively parallel MIMD computers. To the best...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 1993 ACM/IEEE conference on Supercomputing pp. 520 - 527
Main Authors Lomdahl, P. S., Tamayo, P., Grønbech-Jensen, N., Beazley, D. M.
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 01.12.1993
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN0818643404
9780818643408
ISSN1063-9535
DOI10.1145/169627.169794

Cover

More Information
Summary:The authors present timings and performances numbers for a new short range three dimensional (3-D) molecular dynamics (MD) code, SPaSM, on the Connection Machine-5 (CM-5). They demonstrate that runs with more than 10/sup 8/ particles are now possible on massively parallel MIMD computers. To the best of their knowledge this is at least an order of magnitude more particles than what was previously been reported. Typical production runs show sustained performance (including communication) in the range of 47-50 GFlops on a 1024 node CM-5 with vector units (VUs). The speed of the code scales linearly with the number of processors and with the number of particles and shows 95% parallel efficiency in the speedup.
Bibliography:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:0818643404
9780818643408
ISSN:1063-9535
DOI:10.1145/169627.169794