簡単化したモデルによる食品プロセスの解析に関する研究-乾燥とクロマトグラフィー

複雑な食品プロセスをメカニスティックモデルにより厳密に解析しても,実用的には適用することは難しいが,それらの解析から導かれる簡単化したモデルは,ロセスの理解・開発・設計のみならず運転にも有用である.また,安定した製品の製造や製造時のトラブル解決にも役立つ.ここでは液状食品乾燥とタンパク質や食品成分のクロマトグラフィーという2つの拡散支配のプロセスについて簡単化したモデルによる解析を紹介している.液状食品乾燥における水分濃度に依存した拡散係数の等温乾燥速度からの決定方法について説明している.次にモデルから得られる無次元数などに基づき,乾燥挙動および乾燥時の酵素失活に影響を与える因子について考察し...

Full description

Saved in:
Bibliographic Details
Published inJapan Journal of Food Engineering Vol. 20; no. 3; pp. 81 - 97
Main Author 山本, 修一
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本食品工学会 15.09.2019
Online AccessGet full text
ISSN1345-7942
1884-5924
DOI10.11301/jsfe.19557C

Cover

Abstract 複雑な食品プロセスをメカニスティックモデルにより厳密に解析しても,実用的には適用することは難しいが,それらの解析から導かれる簡単化したモデルは,ロセスの理解・開発・設計のみならず運転にも有用である.また,安定した製品の製造や製造時のトラブル解決にも役立つ.ここでは液状食品乾燥とタンパク質や食品成分のクロマトグラフィーという2つの拡散支配のプロセスについて簡単化したモデルによる解析を紹介している.液状食品乾燥における水分濃度に依存した拡散係数の等温乾燥速度からの決定方法について説明している.次にモデルから得られる無次元数などに基づき,乾燥挙動および乾燥時の酵素失活に影響を与える因子について考察している.クロマトグラフィープロセスについては,直線勾配溶出(LGE)法のHETPの決定方法について解説し,LGEの分離特性を相関できる有用な無次元数(Ym)について説明している.次に,有用な概念である等分離度曲線と,その生産性推算への適用を紹介している.また,大量に目的物質を吸着分離するキャプチャークロマトグラフィーにおける動的吸着量を推算するのに便利な無次元数を導き,実験値と比較し議論している.
AbstractList 複雑な食品プロセスをメカニスティックモデルにより厳密に解析しても,実用的には適用することは難しいが,それらの解析から導かれる簡単化したモデルは,ロセスの理解・開発・設計のみならず運転にも有用である.また,安定した製品の製造や製造時のトラブル解決にも役立つ.ここでは液状食品乾燥とタンパク質や食品成分のクロマトグラフィーという2つの拡散支配のプロセスについて簡単化したモデルによる解析を紹介している.液状食品乾燥における水分濃度に依存した拡散係数の等温乾燥速度からの決定方法について説明している.次にモデルから得られる無次元数などに基づき,乾燥挙動および乾燥時の酵素失活に影響を与える因子について考察している.クロマトグラフィープロセスについては,直線勾配溶出(LGE)法のHETPの決定方法について解説し,LGEの分離特性を相関できる有用な無次元数(Ym)について説明している.次に,有用な概念である等分離度曲線と,その生産性推算への適用を紹介している.また,大量に目的物質を吸着分離するキャプチャークロマトグラフィーにおける動的吸着量を推算するのに便利な無次元数を導き,実験値と比較し議論している.
複雑な食品プロセスをメカニスティックモデルにより厳密に解析しても,実用的には適用することは難しいが,それらの解析から導かれる簡単化したモデルは,ロセスの理解・開発・設計のみならず運転にも有用である。また,安定した製品の製造や製造時のトラブル解決にも役立つ。ここでは液状食品乾燥とタンパク質や食品成分のクロマトグラフィーという2つの拡散支配のプロセスについて簡単化したモデルによる解析を紹介している。液状食品乾燥における水分濃度に依存した拡散係数の等温乾燥速度からの決定方法について説明している。次にモデルから得られる無次元数などに基づき,乾燥挙動および乾燥時の酵素失活に影響を与える因子について考察している。クロマトグラフィープロセスについては,直線勾配溶出(LGE)法のHETPの決定方法について解説し,LGEの分離特性を相関できる有用な無次元数(Ym)について説明している。次に,有用な概念である等分離度曲線と,その生産性推算への適用を紹介している。また,大量に目的物質を吸着分離するキャプチャークロマトグラフィーにおける動的吸着量を推算するのに便利な無次元数を導き,実験値と比較し議論している。
Author 山本, 修一
Author_xml – sequence: 1
  fullname: 山本, 修一
  organization: 山口大学 生命医工学センター
BackLink https://agriknowledge.affrc.go.jp/RN/2010930195$$DView record in AgriKnowledge
BookMark eNo9kEtLI0EUhQtxwMe482-01qPbqlpK8AXCbHRdVDpVmY4xke6IuOyuhYIKwvjc-ArDKKLjShDFP3ON0ZV_wW4ibu69cM53Lpwh1N9oNgxCowSPEcIwGa8l1owRGQS81IcGiRC-F0jq9-c38wOPS58OoJEkicoYc8EDKeggWu3enXd2jjrbB5AeQnoK7gLcBrhrSK8h24Rs67192vmTgjsEdwPZI2QPkN6-_Wu_nuzmnveDC0iPc1v3bK97df_xtPPy8Nzd-AvpJWT_C8SdgMtz7sBdgduHrA3u6Sf6YXU9MSNfexgtTk8tlGa9-V8zc6XJeU9TKrXHLA4Em-CEWyZsuVJmTGJsuU9kaCtYakGllMwY33AjAiMqhLIwhxi1hGDKhhHv5Wpr46ildDWOlhrNtbqpVI1q6kgVQqiqTVVbUZgojGX-mRTkZI-sJS2de1fiaFnH60rHrSisG1WUrShWrBi90r-18LeOVU2zTwSVpOI
ContentType Journal Article
Copyright 2019 一般社団法人 日本食品工学会
Copyright_xml – notice: 2019 一般社団法人 日本食品工学会
DBID N5S
DOI 10.11301/jsfe.19557C
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 1884-5924
EndPage 97
ExternalDocumentID oai_affrc_go_jp_01_00922912
article_jsfe_20_3_20_19557C_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
N5S
ID FETCH-LOGICAL-a229a-3f05836717f38fbdb33900f7419cfd09a829993ee4e7e85e8d123cf0532f11023
ISSN 1345-7942
IngestDate Fri Sep 19 12:24:46 EDT 2025
Wed Sep 03 06:29:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a229a-3f05836717f38fbdb33900f7419cfd09a829993ee4e7e85e8d123cf0532f11023
Notes ZZ20014033
930195
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2010930195
PageCount 17
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00922912
jstage_primary_article_jsfe_20_3_20_19557C_article_char_ja
PublicationCentury 2000
PublicationDate 2019/09/15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019/09/15
  day: 15
PublicationDecade 2010
PublicationTitle Japan Journal of Food Engineering
PublicationTitleAlternate 日本食品工学会誌
PublicationYear 2019
Publisher 一般社団法人 日本食品工学会
Publisher_xml – name: 一般社団法人 日本食品工学会
References 52) S. Yamamoto, M. Nomura. Y. Sano; Resolution of proteins in linear gradient elution ion-exchange and hydrophobic interaction chromatography. J. Chromatogr., 409, 101-109(1987).
5) S. Yamamoto; Regular Regime Theory a method for determining the diffusivity from drying rates (in Japanese). Kagaku Kogaku, 79, 662-665 (2015).
23) T. Furuta, S. Tsujimoto, M. Okazaki, R. Toei; Effect of drying on retention of ethanol in maltodextrin solution during drying of a single droplet. Drying Technol., 2, 311-327(1983).
43) T. Furuta, M. Okazaki, R. Toei, E. J. Crosby; Formation of crystals on the surface of non-supported droplet in drying. International Drying Symposium. Hemisphere-McGraw-Hill, New York (1982), pp. 157-164.
24) W. J. A. H. Schoeber; Regular regimes in sorption processes, Ph. D. Thesis, Tech. Univ. Eindhoven, The Netherlands, 1976.
42) E. M. Both, M. Nuzzo, A. Millqvist-Fureby, R. M. Boom, M. A. I. Schutyser; Morphology development during single droplet drying of mixed component formulations and milk. Food Res. Int., 109, 448-454 (2018).
26) S. Yamamoto; A short-cut method for determining concentration dependent diffusivity in liquid foods and polymer solutions from regular regime drying curves, Drying Technol., 19, 1479-1490(2001).
7) S. Yamamoto; Mass transfer properties (in Japanese), in Handbook of Agricultural Chemistry, Asakura, Tokyo, Japan, (2003), pp. 376-381.
59) S. Yamamoto, A. Okamoto, H. Kubo, P. Watler; Expanded bed chromatography for food separation- Lysozyme recovery from egg white and crude beta-galactosidase purification. Jpn. J. Food Eng. 1, 51-56 (2000).
29) T. Aktas, S. Fujii, S. Yamamoto; Water diffusion and desorption behavior during low-temperature drying of foods. J. Chem. Eng. Jpn., 40, 168-172 (2007).
21) P. J. A. M Kerkhof, W. J. A. H. Schoeber; Theoretical modelling of the drying behavior of droplets in spray dryers, Advances in Preconcentration and Dehydration of Foods, ed. by Spicer, A., Applied Science, 1974, pp. 349-397.
22) M. Okazaki, K. Shioda, K. Masuda, R. Toei; Drying mechanism of coated film of polymer solution. Journal of Chemical Engineering of Japan, 7, 99-105 (1974).
1) S. Yamamoto; Drying of gelled sugar solutions: water diffusion behavior, in Dehydration of Products of Biological Origin, ed. by A. S. Mujumdar, pp. 165-201, Science Publisher, 2004.
56) Y. Sugiyama, N. Yoshimoto. S. Yamamoto; A method for calculating the productivity of simulated moving bed chromatography based on the optimized repeated cyclic operation chromatography (in Japanese). Jpn. J. Food Eng., 19, 35-41 (2018).
27) S. Yamamoto, T. Morihiro, K. Ariyoshi, T. Aktas; Effects of surface concentration on drying behavior of carbohydrate solutions,Drying Technol., 23, 1-12 (2005).
17) S. Yamamoto, Y. Sano; Drying of enzymes: enzyme retention during drying of a single droplet, Chem. Eng. Sci., 47, 1, 177-183 (1992).
10) T. K. Sherwood, R. L. Pigford, C. R. Wilke; Mass Transfer, McGraw Hill, 1975.
45) G. Carta, A. Jungbauer; Protein Chromatography : Process Development and Scale-Up, Wiley-VCH, Weinheim, 2010.
51) S. Yamamoto; Plate height determination for gradient elution chromatography of proteins. Biotechnol. Bioeng., 48, 5, 444-451(1995).
15) T. Furuta; Microencapsulation technology by spray drying and molecular inclusion (in Japanese). Jpn. J. Food Eng., 7, 123-161 (2006).
62) N. Yoshimoto, S. Yamamoto; Miniaturization and robotic automation of chromatography columns. Jpn. J. Food Eng., 20, No.3, A-20 (2019).
16) H. Yoshii; The Structure and properties of spray-dried powder (in Japanese). Jpn. J. Food Eng., 14, 119-124 (2013).
38) T. Inazu, K. Iwasaki; Mathematical evaluation of effective moisture diffusivity in fresh Japanese noodles (udon) by regular regime theory. J. Food Sci., 65, 440-444 (2000).
39) T. Aktas, S. Yamamoto, S. Fujii, Effects of pre-treatments on rehydration properties and microscopic structure changes of dried vegetables. Jpn J. Food Eng., 5, 68-272 (2004).
19) S. Yamamoto; Enzyme inactivation during drying-relationships between enzyme thermal stability and water concentration (in Japanese), New Food Industry, 36, 71-87 (1994).
34) A. Gianfrancesco, G. Vuataz, X. Mesnier, V. Meunier; New methods to assess water diffusion in amorphous matrices during storage and drying. Food Chem., 13, 1664-1670 (2012).
36) Y. Konishi, M. Kobayashi; Fantasy in food water species and diversity (in Japanese). Jpn. J. Food Eng., 17, No. 2, A8-A11 (2016).
11) R. E. Treybal; Mass-Transfer Operations, 3rd ed., McGraw-Hill, 1981.
25) W. J. Coumans; Power law diffusion in drying processes, Ph. D Thesis, Tech. Univ. Eindhoven, The Netherlands, 1987.
61) N. Yoshimoto, K. Minakuchi, D. Itoh, Y. Isakari, S. Yamamoto; High-throughput process development methods for chromatography and precipitation of proteins: Advantages and precautions. Eng. Life Sci., 13, 446-455 (2013).
46) R. G. Harrison, P. Todd, S. R. Rudge, D. P. Petrides, Bioseparations Science and Engineering. Oxford University Press, 2002.
48) S. Yamamoto, K. Nakanishi, R. Matsuno; Ion-exchange chromatography of proteins. Taylor and Francis, 1988.
14) K. Masters; Spray Drying Handbook. Halstead Press, New York, 1985.
28) T. Inazu, K. Iwasaki, T. Furuta; Effect of air velocity on fresh Japanese noodle (Udon) drying. LWT-Food Sci. Tech., 36, 277-280 (2003).
55) N. Yoshimoto, Y. Sugiyama, S. Yamamoto; A simple method for calculating the productivity of polyphenol separations by polymer-based chromatography. Biosci., Biotech. Biochem., 81, 812-816, (2017).
32) M. Räderer, A. Besson, K. Sommer; A thin film dryer approach for the determination of water diffusion coefficients in viscous products. Chem. Eng. J., 86, 185-191 (2002).
49) M. D. LeVan, G. Carta, M. Carmen; Adsorption and Ion Exchange, Perry’s Chemical Engineers’ Handbook, Section 16. McGraw Hill, New York, 1999.
2) S. Yamamoto; Drying, in Food Engineering, Asakura, Tokyo, 2012, Chapter 7, pp. 107-119.
30) J. Crank, G. S. Park; Methods of measurement, Diffusion in polymers, Academic Press, NY, USA, 1968. pp. 1-39.
47) G. Guiochon, A. Felinger, D. Shirazi; Fundamentals of preparative and nonlinear chromatography, Elsevier, 2006.
53) G. F. Slaff, Chromatography column scale-up in an industrial environment, Biopharm conference’93, Boston, 1993.
12) Perry’s Chemical Engineers’ Handbook (7th Edition), ed. by R. H. Perry, D. W. Green, McGraw Hill, 1997.
3) S. Yamamoto; Water diffusion mechanism and enzyme inactivation mechanism during drying of liquid foods (in Japanese), Japan J. Food Eng., 7, 215-224 (2006).
20) S. Fujii, N. Yoshimoto, S. Yamamoto; Enzyme retention during drying of amorphous sugar and carbohydrate solutions: Diffusion model revisited. Drying Technol., 31, 1-7 (2013).
44) M. R. Ladisch; Bioseparations Engineering : Principles, Practice, and Economics, John Wiley and Sons, New York, 2001.
40) W. E. Ranz, W. R. Marshall; Evaporation from drops. Parts I & II. Chem. Eng. Progr. 48, 141-146; 173-80 (1952).
13) Kagaku Kogaku Binran (6th ed),Maruzen, 1999.
18) S. Yamamoto, Y. Sano; Drying of carbohydrate and protein solutions. Drying Technol., 12, 5, 1069-1080 (1994).
60) S. Yamamoto, A. Okamoto, P. Watler; Effects of adsorbent properties on zone spreading in expanded bed chromatography. Bioseparation, 10, 1-6 (2001).
6) N. Yoshimoto, S. Yamamoto; Simplified methods based on mechanistic models for understanding and designing chromatography processes for proteins and other biological products-Yamamoto models and Yamamoto approach-, in Preparative chromatography for separation of proteins, Chap 4, Wiley, New York, 2017, pp, 111-157.
50) J. J. van Deemter, F. J. Zuiderweg, A. V. Klinkenberg; Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci., 5, 271-289 (1956).
57) S. Yamamoto, Y. Sano; Short-cut method for predicting the productivity in affinity chromatography, J. Chromatogr., 597, 173-179 (1993).
4) S. Yamamoto; Diffusion coefficients as mass transfer properties and water ad/desorption (drying) (in Japanese). Jpn. J. Food Eng., 11, 73-83 (2010).
35) M. Shigeeda, S. Fujii, N. Yoshimoto, T. Aktas, S. Yamamoto; Effects of salt on drying rates and desorption isotherms of sugar solutions. Proceedings of the 17th International Drying Symposium, Vol. 3, pp. 1903-1906 (2010).
8) J. Crank; The mathematics of diffusion, 2nd ed., Oxford U. P., Oxford, UK, 1975.
31) Suherman, M. Peglow, E. Tsotsas; Drying kinetics of granular Nylon-6. In Proceedings of European Congress of Chemical Engineering (ECCE-6) (2007).
33) A. Gianfrancesco et al., Determination of drying kinetics and water diffusion coefficients in amorphous-crystalline matrices, Proceedings of 17th Int. Drying Symposium, Vol. 3, pp. 1498-1503 (2010).
58) N. Yoshimoto, T. Yada, S. Yamamoto; A simple method for predicting the adsorption performance of capture chromatography of proteins. Jpn. J. Food Eng., 17, 95 -98 (2016).
37) Y. Konishi, M. Kobayashi, K. Miura; Characterisation of water species revealed in the drying operation of Todarodes pacificus Steenstrup using water proton NMR analysis. Int. J. Food Sci. Tech., 45, 1889-1894 (2010).
41) N. Fu, M. W. Woo, X. D. Chen; Single droplet drying technique to study drying kinetics measurement and particle functionality: A review. Drying Technol., 30, 1771-1785 (2012).
9) R. B. Bird, W. E. Stewart, E. N. Lightfoot; Transport Phenomena, John Wiley & Sons, New York, USA, 1960.
54) S. Yamamoto, A. Kita;Theoretical background of short chromatographic layers. Optimization of gradient elution in short columns. J. Chromatogr. A, 1065, 45-50 (2005).
References_xml – reference: 19) S. Yamamoto; Enzyme inactivation during drying-relationships between enzyme thermal stability and water concentration (in Japanese), New Food Industry, 36, 71-87 (1994).
– reference: 48) S. Yamamoto, K. Nakanishi, R. Matsuno; Ion-exchange chromatography of proteins. Taylor and Francis, 1988.
– reference: 42) E. M. Both, M. Nuzzo, A. Millqvist-Fureby, R. M. Boom, M. A. I. Schutyser; Morphology development during single droplet drying of mixed component formulations and milk. Food Res. Int., 109, 448-454 (2018).
– reference: 50) J. J. van Deemter, F. J. Zuiderweg, A. V. Klinkenberg; Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci., 5, 271-289 (1956).
– reference: 27) S. Yamamoto, T. Morihiro, K. Ariyoshi, T. Aktas; Effects of surface concentration on drying behavior of carbohydrate solutions,Drying Technol., 23, 1-12 (2005).
– reference: 60) S. Yamamoto, A. Okamoto, P. Watler; Effects of adsorbent properties on zone spreading in expanded bed chromatography. Bioseparation, 10, 1-6 (2001).
– reference: 43) T. Furuta, M. Okazaki, R. Toei, E. J. Crosby; Formation of crystals on the surface of non-supported droplet in drying. International Drying Symposium. Hemisphere-McGraw-Hill, New York (1982), pp. 157-164.
– reference: 10) T. K. Sherwood, R. L. Pigford, C. R. Wilke; Mass Transfer, McGraw Hill, 1975.
– reference: 46) R. G. Harrison, P. Todd, S. R. Rudge, D. P. Petrides, Bioseparations Science and Engineering. Oxford University Press, 2002.
– reference: 58) N. Yoshimoto, T. Yada, S. Yamamoto; A simple method for predicting the adsorption performance of capture chromatography of proteins. Jpn. J. Food Eng., 17, 95 -98 (2016).
– reference: 51) S. Yamamoto; Plate height determination for gradient elution chromatography of proteins. Biotechnol. Bioeng., 48, 5, 444-451(1995).
– reference: 40) W. E. Ranz, W. R. Marshall; Evaporation from drops. Parts I & II. Chem. Eng. Progr. 48, 141-146; 173-80 (1952).
– reference: 49) M. D. LeVan, G. Carta, M. Carmen; Adsorption and Ion Exchange, Perry’s Chemical Engineers’ Handbook, Section 16. McGraw Hill, New York, 1999.
– reference: 3) S. Yamamoto; Water diffusion mechanism and enzyme inactivation mechanism during drying of liquid foods (in Japanese), Japan J. Food Eng., 7, 215-224 (2006).
– reference: 20) S. Fujii, N. Yoshimoto, S. Yamamoto; Enzyme retention during drying of amorphous sugar and carbohydrate solutions: Diffusion model revisited. Drying Technol., 31, 1-7 (2013).
– reference: 59) S. Yamamoto, A. Okamoto, H. Kubo, P. Watler; Expanded bed chromatography for food separation- Lysozyme recovery from egg white and crude beta-galactosidase purification. Jpn. J. Food Eng. 1, 51-56 (2000).
– reference: 12) Perry’s Chemical Engineers’ Handbook (7th Edition), ed. by R. H. Perry, D. W. Green, McGraw Hill, 1997.
– reference: 52) S. Yamamoto, M. Nomura. Y. Sano; Resolution of proteins in linear gradient elution ion-exchange and hydrophobic interaction chromatography. J. Chromatogr., 409, 101-109(1987).
– reference: 14) K. Masters; Spray Drying Handbook. Halstead Press, New York, 1985.
– reference: 34) A. Gianfrancesco, G. Vuataz, X. Mesnier, V. Meunier; New methods to assess water diffusion in amorphous matrices during storage and drying. Food Chem., 13, 1664-1670 (2012).
– reference: 30) J. Crank, G. S. Park; Methods of measurement, Diffusion in polymers, Academic Press, NY, USA, 1968. pp. 1-39.
– reference: 5) S. Yamamoto; Regular Regime Theory a method for determining the diffusivity from drying rates (in Japanese). Kagaku Kogaku, 79, 662-665 (2015).
– reference: 1) S. Yamamoto; Drying of gelled sugar solutions: water diffusion behavior, in Dehydration of Products of Biological Origin, ed. by A. S. Mujumdar, pp. 165-201, Science Publisher, 2004.
– reference: 41) N. Fu, M. W. Woo, X. D. Chen; Single droplet drying technique to study drying kinetics measurement and particle functionality: A review. Drying Technol., 30, 1771-1785 (2012).
– reference: 18) S. Yamamoto, Y. Sano; Drying of carbohydrate and protein solutions. Drying Technol., 12, 5, 1069-1080 (1994).
– reference: 26) S. Yamamoto; A short-cut method for determining concentration dependent diffusivity in liquid foods and polymer solutions from regular regime drying curves, Drying Technol., 19, 1479-1490(2001).
– reference: 16) H. Yoshii; The Structure and properties of spray-dried powder (in Japanese). Jpn. J. Food Eng., 14, 119-124 (2013).
– reference: 61) N. Yoshimoto, K. Minakuchi, D. Itoh, Y. Isakari, S. Yamamoto; High-throughput process development methods for chromatography and precipitation of proteins: Advantages and precautions. Eng. Life Sci., 13, 446-455 (2013).
– reference: 6) N. Yoshimoto, S. Yamamoto; Simplified methods based on mechanistic models for understanding and designing chromatography processes for proteins and other biological products-Yamamoto models and Yamamoto approach-, in Preparative chromatography for separation of proteins, Chap 4, Wiley, New York, 2017, pp, 111-157.
– reference: 47) G. Guiochon, A. Felinger, D. Shirazi; Fundamentals of preparative and nonlinear chromatography, Elsevier, 2006.
– reference: 21) P. J. A. M Kerkhof, W. J. A. H. Schoeber; Theoretical modelling of the drying behavior of droplets in spray dryers, Advances in Preconcentration and Dehydration of Foods, ed. by Spicer, A., Applied Science, 1974, pp. 349-397.
– reference: 62) N. Yoshimoto, S. Yamamoto; Miniaturization and robotic automation of chromatography columns. Jpn. J. Food Eng., 20, No.3, A-20 (2019).
– reference: 11) R. E. Treybal; Mass-Transfer Operations, 3rd ed., McGraw-Hill, 1981.
– reference: 31) Suherman, M. Peglow, E. Tsotsas; Drying kinetics of granular Nylon-6. In Proceedings of European Congress of Chemical Engineering (ECCE-6) (2007).
– reference: 45) G. Carta, A. Jungbauer; Protein Chromatography : Process Development and Scale-Up, Wiley-VCH, Weinheim, 2010.
– reference: 53) G. F. Slaff, Chromatography column scale-up in an industrial environment, Biopharm conference’93, Boston, 1993.
– reference: 17) S. Yamamoto, Y. Sano; Drying of enzymes: enzyme retention during drying of a single droplet, Chem. Eng. Sci., 47, 1, 177-183 (1992).
– reference: 2) S. Yamamoto; Drying, in Food Engineering, Asakura, Tokyo, 2012, Chapter 7, pp. 107-119.
– reference: 25) W. J. Coumans; Power law diffusion in drying processes, Ph. D Thesis, Tech. Univ. Eindhoven, The Netherlands, 1987.
– reference: 36) Y. Konishi, M. Kobayashi; Fantasy in food water species and diversity (in Japanese). Jpn. J. Food Eng., 17, No. 2, A8-A11 (2016).
– reference: 37) Y. Konishi, M. Kobayashi, K. Miura; Characterisation of water species revealed in the drying operation of Todarodes pacificus Steenstrup using water proton NMR analysis. Int. J. Food Sci. Tech., 45, 1889-1894 (2010).
– reference: 15) T. Furuta; Microencapsulation technology by spray drying and molecular inclusion (in Japanese). Jpn. J. Food Eng., 7, 123-161 (2006).
– reference: 39) T. Aktas, S. Yamamoto, S. Fujii, Effects of pre-treatments on rehydration properties and microscopic structure changes of dried vegetables. Jpn J. Food Eng., 5, 68-272 (2004).
– reference: 4) S. Yamamoto; Diffusion coefficients as mass transfer properties and water ad/desorption (drying) (in Japanese). Jpn. J. Food Eng., 11, 73-83 (2010).
– reference: 9) R. B. Bird, W. E. Stewart, E. N. Lightfoot; Transport Phenomena, John Wiley & Sons, New York, USA, 1960.
– reference: 44) M. R. Ladisch; Bioseparations Engineering : Principles, Practice, and Economics, John Wiley and Sons, New York, 2001.
– reference: 55) N. Yoshimoto, Y. Sugiyama, S. Yamamoto; A simple method for calculating the productivity of polyphenol separations by polymer-based chromatography. Biosci., Biotech. Biochem., 81, 812-816, (2017).
– reference: 23) T. Furuta, S. Tsujimoto, M. Okazaki, R. Toei; Effect of drying on retention of ethanol in maltodextrin solution during drying of a single droplet. Drying Technol., 2, 311-327(1983).
– reference: 28) T. Inazu, K. Iwasaki, T. Furuta; Effect of air velocity on fresh Japanese noodle (Udon) drying. LWT-Food Sci. Tech., 36, 277-280 (2003).
– reference: 24) W. J. A. H. Schoeber; Regular regimes in sorption processes, Ph. D. Thesis, Tech. Univ. Eindhoven, The Netherlands, 1976.
– reference: 32) M. Räderer, A. Besson, K. Sommer; A thin film dryer approach for the determination of water diffusion coefficients in viscous products. Chem. Eng. J., 86, 185-191 (2002).
– reference: 8) J. Crank; The mathematics of diffusion, 2nd ed., Oxford U. P., Oxford, UK, 1975.
– reference: 35) M. Shigeeda, S. Fujii, N. Yoshimoto, T. Aktas, S. Yamamoto; Effects of salt on drying rates and desorption isotherms of sugar solutions. Proceedings of the 17th International Drying Symposium, Vol. 3, pp. 1903-1906 (2010).
– reference: 56) Y. Sugiyama, N. Yoshimoto. S. Yamamoto; A method for calculating the productivity of simulated moving bed chromatography based on the optimized repeated cyclic operation chromatography (in Japanese). Jpn. J. Food Eng., 19, 35-41 (2018).
– reference: 54) S. Yamamoto, A. Kita;Theoretical background of short chromatographic layers. Optimization of gradient elution in short columns. J. Chromatogr. A, 1065, 45-50 (2005).
– reference: 57) S. Yamamoto, Y. Sano; Short-cut method for predicting the productivity in affinity chromatography, J. Chromatogr., 597, 173-179 (1993).
– reference: 13) Kagaku Kogaku Binran (6th ed),Maruzen, 1999.
– reference: 33) A. Gianfrancesco et al., Determination of drying kinetics and water diffusion coefficients in amorphous-crystalline matrices, Proceedings of 17th Int. Drying Symposium, Vol. 3, pp. 1498-1503 (2010).
– reference: 22) M. Okazaki, K. Shioda, K. Masuda, R. Toei; Drying mechanism of coated film of polymer solution. Journal of Chemical Engineering of Japan, 7, 99-105 (1974).
– reference: 7) S. Yamamoto; Mass transfer properties (in Japanese), in Handbook of Agricultural Chemistry, Asakura, Tokyo, Japan, (2003), pp. 376-381.
– reference: 29) T. Aktas, S. Fujii, S. Yamamoto; Water diffusion and desorption behavior during low-temperature drying of foods. J. Chem. Eng. Jpn., 40, 168-172 (2007).
– reference: 38) T. Inazu, K. Iwasaki; Mathematical evaluation of effective moisture diffusivity in fresh Japanese noodles (udon) by regular regime theory. J. Food Sci., 65, 440-444 (2000).
SSID ssib007875982
ssj0003306328
ssib005059329
Score 2.216417
Snippet 複雑な食品プロセスをメカニスティックモデルにより厳密に解析しても,実用的には適用することは難しいが,それらの解析から導かれる簡単化したモデルは,ロセスの理解・...
SourceID affrit
jstage
SourceType Open Access Repository
Publisher
StartPage 81
Title 簡単化したモデルによる食品プロセスの解析に関する研究-乾燥とクロマトグラフィー
URI https://www.jstage.jst.go.jp/article/jsfe/20/3/20_19557C/_article/-char/ja
https://agriknowledge.affrc.go.jp/RN/2010930195
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本食品工学会誌, 2019/09/15, Vol.20(3), pp.81-97
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1884-5924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306328
  issn: 1345-7942
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcX6xR7MSbbMTGYmSW8z21mKoiC00Nswn8U9tKW2F2-zc6iggqC2emm1RbQUtSehKP4zcV37X_iSmezOoogVlvDIvpe85CWTX0LynqZdx5hYDraiJksYa1p2EsGcS-NmSKzQxMyhTHrnv33HmZmzbs7b82MnSO3W0tpqNBk_-OO7kv-xKuSBXcUr2WNYdlAoZAAN9oUULAzpP9kY-QR5OnIN5NuITiNGJdFCzEE-BpCIGFFEWxIYuWZFUKJyvIqnIkxEqSIghyEXS3EbMclWSrGB-HTF7Clxj6kCfeRT5BJRgu8g5iOm1-piQs9KH9CQ1SoFER0xSxIMeY48uUC-Jcr2fJEN6ru2Kkzp67ZHlcKizqq5isfTFQ9TPLYSx1VOFe9bgXYAFIs3atC9LV1BDz05qlEr-sgzxE-0toXclhjBUu227AwgKCpjSqmjFkPeJSsfm1arA7aEf09rZPkw9do0wbW1oAxFU6GK8hLy7-sVLgMl3M_SSYPZNomH6_KoB_AsW4mDhaWgsxzoRiBcZZlMRNc-aRLHEaE7bt2t-WUTgRpruBe-ysJR4-DwEcNGEcu4w4MmqUchWLjkGqoDwExUfU9suzqwX1F3HSX8mj2jna46v-GWk-CsNtYJz2lr_YM3vScve483eL7J821e7PBinRf7PN_n3Ye8--hod7v3LOfFJi8-8O4X3j3k-cef73Z_bD0FnqONHZ6_Arb-6-f9vc-Nqcb3w2_99bc8f8-7n4RIscULKOeAF3u8eMG7u7z4el6ba_uzrZlmFUekGUInhU2c6TbFDjFIhmkWJRHGTNczwNIszhKdhRQwGcNpaqUkpXZKE4BzcSZipmSGcG1yQRtfXFpML2oNg1k0MgDCkyS1mJNGOrazNE5wQmDxs9IJTS-7KwgXVobH4sFfTDihTZUdGyyX_mWC6nsSCDMEph5gkUhztAb_iTeZQSe8dPz6LmunhmP7ija-urKWXgVgvRpdk4PoF22Xvb0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%B0%A1%E5%8D%98%E5%8C%96%E3%81%97%E3%81%9F%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AB%E3%82%88%E3%82%8B%E9%A3%9F%E5%93%81%E3%83%97%E3%83%AD%E3%82%BB%E3%82%B9%E3%81%AE%E8%A7%A3%E6%9E%90%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E7%A0%94%E7%A9%B6+%3A+%E4%B9%BE%E7%87%A5%E3%81%A8%E3%82%AF%E3%83%AD%E3%83%9E%E3%83%88%E3%82%B0%E3%83%A9%E3%83%95%E3%82%A3%E3%83%BC&rft.jtitle=Japan+Journal+of+Food+Engineering&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E4%BF%AE%E4%B8%80&rft.date=2019-09-15&rft.issn=1345-7942&rft.volume=20&rft.issue=3&rft.spage=81&rft.epage=97&rft_id=info:doi/10.11301%2Fjsfe.19557c&rft.externalDocID=oai_affrc_go_jp_01_00922912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-7942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-7942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-7942&client=summon