Ab Initio Discovery of Stable Double Perovskite Oxides Na2BIO6 (B = Bi, In) with Promising Optoelectronic Properties

Recently, oxide perovskites are garnering tremendous attention from the scientific community as possible alternatives to the currently used active materials in photovoltaic (PV) and photoelectrochemical (PEC) devices. Herein, we report the stability and promising optoelectronic properties of a few p...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 11; no. 13; pp. 5148 - 5155
Main Authors Kangsabanik, Jiban, Alam, Aftab
Format Journal Article
LanguageEnglish
Published American Chemical Society 02.07.2020
Subjects
Online AccessGet full text
ISSN1948-7185
1948-7185
DOI10.1021/acs.jpclett.0c01256

Cover

More Information
Summary:Recently, oxide perovskites are garnering tremendous attention from the scientific community as possible alternatives to the currently used active materials in photovoltaic (PV) and photoelectrochemical (PEC) devices. Herein, we report the stability and promising optoelectronic properties of a few previously unexplored periodates A2BIO6 (A = alkali metal; B = Bi, Sb, In, Tl, Ga). Our compositional phase diagram analysis reveals two compounds Na2BIO6 (B = Bi, In) that stabilize in monoclinic phase at thermodynamic equilibrium, showing band gaps (E g) in the visible region. Band engineering via alloying Bi in Na2InIO6 introduces Bi 6s lone pair bands above the valence band maxima (VBM), while alloying Tl in Na2BiIO6 introduces an intermediate band (Tl s character) below the conduction band minima. These alloys, Na2Bi0.25In0.75IO6 and Na2Tl0.25Bi0.75IO6, acquire E g’s of 1.66 and 1.78 eV, respectively. Apart from band gap, the antibonding VBM, favorable optical absorption, highly dispersive band edges, and well-positioned VBM (for efficient oxygen evolution reaction) make these compounds highly promising for PV and PEC applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c01256