静水圧とシステイン添加によるアクリルアミドの生成抑制

100 MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH 9.0の等モル濃度のアスパラギン–グルコース水溶液を用いて検討した.常圧,60または90 MPaの圧力下で70℃,72時間までの反応を行い,アクリルアミドの生成量,メラノイジンの生成量,反応後のpHを測定した.メラノイジンの生成との比較によって,アクリルアミドの生成は,圧力保持により相対的に抑制されることが明らかとなった.また,同試料にシステインを添加して90 MPaの圧力下で70℃,24時間反応させた場合,圧力保持の有無に関らず,アクリルアミド生成が著しく抑制された.上述の結果に基づいて,圧力保持とシステイ...

Full description

Saved in:
Bibliographic Details
Published inJapan Journal of Food Engineering Vol. 22; no. 4; pp. 87 - 101
Main Authors 五味川, 里子, 小黒, 麻美, 佐藤, 眞治, 前川, 博史, 山﨑, 彬, 小林, 篤
Format Journal Article
LanguageEnglish
Published 一般社団法人 日本食品工学会 15.12.2021
Online AccessGet full text
ISSN1345-7942
1884-5924
DOI10.11301/jsfe.21593

Cover

Abstract 100 MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH 9.0の等モル濃度のアスパラギン–グルコース水溶液を用いて検討した.常圧,60または90 MPaの圧力下で70℃,72時間までの反応を行い,アクリルアミドの生成量,メラノイジンの生成量,反応後のpHを測定した.メラノイジンの生成との比較によって,アクリルアミドの生成は,圧力保持により相対的に抑制されることが明らかとなった.また,同試料にシステインを添加して90 MPaの圧力下で70℃,24時間反応させた場合,圧力保持の有無に関らず,アクリルアミド生成が著しく抑制された.上述の結果に基づいて,圧力保持とシステイン添加によるアクリルアミド生成抑制効果を,アクリルアミドを比較的多く含む黒糖(Non-centrifugal cane sugar,NCS)水溶液(pH 5.5)を用いて同様の加圧加熱反応により検証した.システイン添加は,NCS水溶液の含有するアクリルアミドを低減し,加熱反応に伴うアクリルアミド生成を抑制した.また,NCS水溶液の圧力保持はアクリルアミドの生成を促進したが,高濃度のシステイン共存下での圧力保持は,アクリルアミドの低減を促進した.これらの結果から,食品の加工で起こるアクリルアミド生成やメイラード反応は,静水圧やシステインの添加で制御できる可能性が示唆された.
AbstractList 100MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH9.0の等モル濃度のアスパラギン-グルコース水溶液を用いて検討した。常圧,60または90MPaの圧力下で70℃,72時間までの反応を行い,アクリルアミドの生成量,メラノイジンの生成量,反応後のpHを測定した。メラノイジンの生成との比較によって,アクリルアミドの生成は,圧力保持により相対的に抑制されることが明らかとなった。また,同試料にシステインを添加して90MPaの圧力下で70℃,24時間反応させた場合,圧力保持の有無に関らず,アクリルアミド生成が著しく抑制された。上述の結果に基づいて,圧力保持とシステイン添加によるアクリルアミド生成抑制効果を,アクリルアミドを比較的多く含む黒糖(Non-centrifugal cane sugar,NCS)水溶液(pH5.5)を用いて同様の加圧加熱反応により検証した。システイン添加は,NCS水溶液の含有するアクリルアミドを低減し,加熱反応に伴うアクリルアミド生成を抑制した。また,NCS水溶液の圧力保持はアクリルアミドの生成を促進したが,高濃度のシステイン共存下での圧力保持は,アクリルアミドの低減を促進した。これらの結果から,食品の加工で起こるアクリルアミド生成やメイラード反応は,静水圧やシステインの添加で制御できる可能性が示唆された。
100 MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH 9.0の等モル濃度のアスパラギン–グルコース水溶液を用いて検討した.常圧,60または90 MPaの圧力下で70℃,72時間までの反応を行い,アクリルアミドの生成量,メラノイジンの生成量,反応後のpHを測定した.メラノイジンの生成との比較によって,アクリルアミドの生成は,圧力保持により相対的に抑制されることが明らかとなった.また,同試料にシステインを添加して90 MPaの圧力下で70℃,24時間反応させた場合,圧力保持の有無に関らず,アクリルアミド生成が著しく抑制された.上述の結果に基づいて,圧力保持とシステイン添加によるアクリルアミド生成抑制効果を,アクリルアミドを比較的多く含む黒糖(Non-centrifugal cane sugar,NCS)水溶液(pH 5.5)を用いて同様の加圧加熱反応により検証した.システイン添加は,NCS水溶液の含有するアクリルアミドを低減し,加熱反応に伴うアクリルアミド生成を抑制した.また,NCS水溶液の圧力保持はアクリルアミドの生成を促進したが,高濃度のシステイン共存下での圧力保持は,アクリルアミドの低減を促進した.これらの結果から,食品の加工で起こるアクリルアミド生成やメイラード反応は,静水圧やシステインの添加で制御できる可能性が示唆された.
Author 小黒, 麻美
山﨑, 彬
五味川, 里子
小林, 篤
佐藤, 眞治
前川, 博史
Author_xml – sequence: 1
  fullname: 五味川, 里子
  organization: 越後製菓株式会社総合研究所
– sequence: 1
  fullname: 小黒, 麻美
  organization: 越後製菓株式会社総合研究所
– sequence: 1
  fullname: 佐藤, 眞治
  organization: 新潟薬科大学応用生命科学科
– sequence: 1
  fullname: 前川, 博史
  organization: 長岡技術科学大学
– sequence: 1
  fullname: 山﨑, 彬
  organization: 越後製菓株式会社総合研究所
– sequence: 1
  fullname: 小林, 篤
  organization: 越後製菓株式会社総合研究所
BackLink https://agriknowledge.affrc.go.jp/RN/2030940685$$DView record in AgriKnowledge
BookMark eNo9kM1Kw0AURgepYK1d-Rypd2YyTbJTin9QdKPrYZJOamJtSlIQl01Aat0ouBGUigiKBRUUi_g4QyO-hYkVN_ce-O53F2ceFdpBWyK0iKGCMQW85EeurBDMLDqDitg0dY1ZRC9kTHWmGZZO5lA5inwAoBSqlJhFtPV9fZm-vE2u7lXvQcVjFX-o5FjFdyp5Tcefk8GN6o1U3FfxqYpvVfyskkeVjHJOhio5Ub2nr4th2j9LB-eT_vsCmnVFK5Llv11Cu2urO7UNrb69vllbqWuCEFNohgu2dKigptVghrCJwJZhu2aVUmFIVwdwLINgO6OGKylhpAoMAGNGwTExoSVkTP8K1w29LhfN0NtvB4ct2WhKHgiP54HDmwH3OxwwB7BYZgGy5vK06Uddkd12Qu9AhEdchF3PaUmeS-SEcD0fvzL_I2dPhNwX9AcrPYkP
ContentType Journal Article
Copyright 2021 一般社団法人 日本食品工学会
Copyright_xml – notice: 2021 一般社団法人 日本食品工学会
DBID N5S
DOI 10.11301/jsfe.21593
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 1884-5924
EndPage 101
ExternalDocumentID oai_affrc_go_jp_01_00953450
article_jsfe_22_4_22_21593_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
N5S
ID FETCH-LOGICAL-a228a-7f0bec3a389d57ab2a197bf8633a7ef400c9721bf40dfe32526050011530c8123
ISSN 1345-7942
IngestDate Sat Oct 18 14:43:27 EDT 2025
Wed Sep 03 06:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a228a-7f0bec3a389d57ab2a197bf8633a7ef400c9721bf40dfe32526050011530c8123
Notes ZZ20014033
940685
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2030940685
PageCount 15
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00953450
jstage_primary_article_jsfe_22_4_22_21593_article_char_ja
PublicationCentury 2000
PublicationDate 2021/12/15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021/12/15
  day: 15
PublicationDecade 2020
PublicationTitle Japan Journal of Food Engineering
PublicationTitleAlternate 日本食品工学会誌
PublicationYear 2021
Publisher 一般社団法人 日本食品工学会
Publisher_xml – name: 一般社団法人 日本食品工学会
References 5) FAO and WHO; “Safety evaluation of certain contaminants in food.” WHO Food Additives Series 55, FAO Food and nutrition paper 82, the 64th meeting of the Joint FAO/WHO Expert Committee on Food Additives, 2006, p. 1.
31) C. T. Kim, E.-S. Hwang, H. J. Lee; Reducing acrylamide in fried snack products by adding amino acids. J. Food Sci., 70, C354-C358 (2005).
18) V. M. Hill, D.A. Ledward, J. M. Ames; Influence of high hydrostatic pressure and pH on the rate of Maillard browning in a glucose-lysine system. J. Agric. Food Chem., 44, 594-598 (1996).
20) K. De Vleeschouwer, I. Van Der Plancken, A. Van Loey, M. E. Hendrickx; The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. J. Agric. Food Chem., 58, 11740-11748 (2010).
11) A. Sasagawa, Y. Naiki, S. Nagashima, M. Yamakura, A. Yamazaki, A. Yamada; “Process for producing brown rice with increased accumulation of GABA using high-pressure treatment and properties of GABA-increased brown rice” (in Japanese). J. Appl. Glycosci., 53, 27-33 (2006).
27) S. I. F. S. Martins, W. M. F. Jongen, M. A. J. S. Van Boekel; A review of Maillard reaction in food and implications to kinetic modelling. Trends Food. Sci. Technol., 11, 364-373 (2001).
35) R. H. Stadler, F. Robert, S. Riediker, N. Varga, T. Davidek, S. Devaud, T. Goldmann, J. Hau, I. Blank; In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem., 52, 5550-5558 (2004).
43) K. Ujihara, M. Yoshimoto, K. Wada, M. Takahashi, I. Suda; “Enhancement of DPPH-radical scavenging activity in heat-processed sugarcane Molasses” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 60, 159-164 (2013).
29) S. I. Martinez-Monteagudo, M. D. A. Saldaña; Chemical reaction in food systems at high hydrostatic pressure. Food Eng. Rev., 6, 150-127 (2014).
2) E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, M. Törnqvist; Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem., 50, 4998-5006 (2002).
28) K. Kawai, T. Hagiwara, R. Takai, T. Suzuki; “Effect of reducing sugar on the Maillard reaction rate of freeze-dried food in the glassy state” (in Japanese). Japan J. Food Eng., 6, 59-64 (2005).
36) M. Granvogl, P. Schieberle; Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. J. Agric. Food Chem., 54, 5933-5938 (2006).
12) A. Kobayashi, M. Kawamura, E. Ohara, M. Ogino, J. Hoshino; “Application of high-pressure treatment to sterilization of foods” (in Japanese). Rev. High Pressure Sci. Technol., 24, 48-51 (2014).
15) T. Okazaki, K. Noguchi; “The way of autolytic hydrolysis under hydrostatic pressure and development of its equipment” (in Japanese). Jpn. J. Food Eng., 9, 239-250 (2008).
44) W. R. Jaffé; Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from analytical literature. J. Food Composition and Analysis, 43, 194-202 (2015).
10) M. Kinefuchi, M. Sekiya, A. Yamazaki, K. Yamamoto; “Change in viable bacteria count in brown rice containing accumulated GABA by high pressure treatment, and properties of processed brown rice” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 46, 329-333 (1999).
16) A. Kobayashi, S. Gomikawa, A. Oguro, S. Maeda, A. Yamazaki, S. Sato, H. Maekawa; The effect of high hydrostatic pressure on acrylamide generation in aqueous reaction systems using asparagine and glucose. J. Food Sci. Technol. Res., 25, 587-596 (2019).
23) J. J. Knol, W. A. M. Van Loon, J. P. H. Linssen, A.-L. Ruck, M. A. J. S. Van Boekel, A. G. J. Voragen; Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. J. Agric. Food Chem., 53, 6133-6139 (2005).
22) A. Kobayashi, S. Gomikawa, A. Oguro, S. Maeda, A. Yamazaki, S. Sato, H. Maekawa; Effects on acrylamide generation under heating conditions by addition of lysine and cysteine to non-centrifugal cane sugar. J. Food Sci. Technol. Res., 26, 673-680 (2020).
19) T. Tamaoka, N. Itoh, R. Hayashi; High pressure effect on Maillard reaction. Agric. Bio. Chem., 55, 2071-2074 (1991).
33) D. V. Zyzak, R. A. Sanders, M. Stojanovic, D. H. Tallmadge, B. Eberhart, D. K. Ewald, D. C. Gruber, T. R. Morsch, M. A. Strothers, G. P. Rizzi, M. D. Villagran; Acrylamide formation mechanism in heated foods. J. Agric. Food Chem., 51, 4782-4787 (2003).
1) International Agency for Research on Cancer; Acrylamide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 60, 289-483 (1994).
6) FAO and WHO; “Safety evaluation of certain contaminants in food.” WHO Food Additives Series 63, FAO JECFA Monographs 8, the 72nd meeting of the Joint FAO/WHO Expert Committee on Food Additives, 2011, p. 1.
40) K. Tsutsumiuchi, M. Hibino, M. Kambe, N. Okajima, M. Okada, J. Miwa, H. Taniguchi; Effect of carbohydrates on formation of acrylamide in cooked food models. J. Appl. Glycosci., 52, 219-224 (2005).
13) M. Ogino, T. Nishiumi; “Sterilization of heat-resistant spores by a combination of high-pressure and subsequent heat treatment” (in Japanese). Rev. High Pressure Sci. Technol., 25, 334-342 (2015).
26) H. Nursten; “The Maillard Reaction: Chemistry, Biochemistry and Implications.” The Royal Society of Chemistry, Cambridge, UK, 2005, p. 2.
38) S. Ehling, M. Hengel, T. Shibamoto; “Chemistry and safety of acrylamide in food. Advances in Experimental Medicine and Biology” vol. 561, M. Friedman, D. S. Mottram ed., Springer, New York, US, 2005, p. 223.
34) M. Granvogl, J. Magnus, P. Koehler, P. Schieberle; Quantitation of 3-aminopropionamide in potatoes. A minor but potent precursor in acrylamide formation. J. Agric. Food Chem., 52, 4751-4757 (2004).
41) N. Hirose, G. Maeda, K. Takara, K. Wada; “Changes in the physicochemical and flavor characteristics of the Okinawan brown sugar “kokuto” during storage at ambient temperature” (in Japanese). Food Preserv. Sci., 41, 253-259 (2015).
17) J. M. Ames; Application of the Maillard reaction in the food industry. Food Chem., 62, 431-439 (1998).
3) T. Gomyo, M. Miura; “Melanoidin in Foods: Chemical and physiological aspects” (in Japanese). Journal of Japanese Society of Nutrition and Food Science, 36, 331-340 (1983).
25) F. J. Moreno, E. Molina, A. Olano, R. Lopez-Fandino; High-pressure effects on Maillard reaction between glucose and lysine, J. Agric. Food Chem., 51, 394-400 (2003).
9) M. Kinefuchi, M Sekiya, A. Yamazaki, K. Yamamoto: “Accumulation of GABA in brown rice by high pressure treatment” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 46, 323-328 (1999).
32) M. Murata; “Food chemistry study on enzymatic browning and the Maillard reaction” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 67, 1-12 (2020).
8) A. Yamazaki, M. Kinefuchi, K. Yamamoto, A. Yamada; “Physical properties and fine structure of grains of high-pressure-treated rice after cooking” (in Japanese). Rev. High Pressure Sci. Technol., 5, 168-178 (1996).
14) M. Ogino, T. Nishiumi; Control of the generation time of microorganisms by long-term application of hydrostatic pressure of 50 MPa or less. Food Sci. Technol. Res., 24, 289-298 (2018).
4) J. A. Rufián-Henares, F J. Morales; Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Res. Int., 40, 995–1002 (2007).
37) I. Blank, F. Robert, T. Goldmann, P. Pollien, N. Varga, S. Devaud, F. Saucy, T. Huynh-Ba, H. Stadler; “Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology” vol. 561, M. Friedman, D. S. Mottram. Ed., Springer, New York, US, 2005, p. 171.
30) W. L. Claeys, K. De Vleeschouwer, M. F. Hendrickx; Effect of amino acid on acylamide formatoin and elimination kinetics. Biotechnol. Prog., 21, 1525-1530 (2005).
39) K. Ishihara, A. Matsunaga, T. Miyoshi, K. Nakamura, T. Nakayama, S. Ito, H. Koga; Formation of acrylamide in a processed food model system, and examination of inhibitory conditions. J. Food Hyg. Soc. Japan, 46, 33-39 (2005).
24) G. Maeda, I. Shimoji, T. Tedokon, H. Shimoji, K. Uechi, H. Ishimine, M. Sunagawa, J. Chinen, K. Degi, K. Miyagi, T. Ogi; “Comparison between non-centrifugal brown sugar (Kokuto) manufactured using cane juice alone and that manufactured using cane juice with cane top juice” (in Japanese). Okinawa Prefectural Agricultural Research Center Kenkyu Houkoku, 12, 14-20 (2018).
7) A. Sasagawa, M. Kinefuchi, A. Yamazaki, A. Yamada; “High pressure bioscience” (in Japanese), R. Hayashi, S. Kunugi, S. Shimada, A. Suzuki ed., San-ei Shuppan, Kyoto, Japan, 1994, p. 336.
21) M. Nakahara; “High pressure science for food” (in Japanese), R. Hayashi ed., San-ei Shuppan, Kyoto, Japan, 1991, p. 41.
42) S. Honda, T. Masuda; “Polyphenols: Functional chemicals based on their chemical reactions, from antioxidation to inter-substance reactions” (in Japanese). Kagaku To Seibutsu, 53, 442-448 (2015).
References_xml – reference: 20) K. De Vleeschouwer, I. Van Der Plancken, A. Van Loey, M. E. Hendrickx; The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. J. Agric. Food Chem., 58, 11740-11748 (2010).
– reference: 2) E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, M. Törnqvist; Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem., 50, 4998-5006 (2002).
– reference: 4) J. A. Rufián-Henares, F J. Morales; Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Res. Int., 40, 995–1002 (2007).
– reference: 18) V. M. Hill, D.A. Ledward, J. M. Ames; Influence of high hydrostatic pressure and pH on the rate of Maillard browning in a glucose-lysine system. J. Agric. Food Chem., 44, 594-598 (1996).
– reference: 3) T. Gomyo, M. Miura; “Melanoidin in Foods: Chemical and physiological aspects” (in Japanese). Journal of Japanese Society of Nutrition and Food Science, 36, 331-340 (1983).
– reference: 12) A. Kobayashi, M. Kawamura, E. Ohara, M. Ogino, J. Hoshino; “Application of high-pressure treatment to sterilization of foods” (in Japanese). Rev. High Pressure Sci. Technol., 24, 48-51 (2014).
– reference: 14) M. Ogino, T. Nishiumi; Control of the generation time of microorganisms by long-term application of hydrostatic pressure of 50 MPa or less. Food Sci. Technol. Res., 24, 289-298 (2018).
– reference: 29) S. I. Martinez-Monteagudo, M. D. A. Saldaña; Chemical reaction in food systems at high hydrostatic pressure. Food Eng. Rev., 6, 150-127 (2014).
– reference: 26) H. Nursten; “The Maillard Reaction: Chemistry, Biochemistry and Implications.” The Royal Society of Chemistry, Cambridge, UK, 2005, p. 2.
– reference: 19) T. Tamaoka, N. Itoh, R. Hayashi; High pressure effect on Maillard reaction. Agric. Bio. Chem., 55, 2071-2074 (1991).
– reference: 32) M. Murata; “Food chemistry study on enzymatic browning and the Maillard reaction” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 67, 1-12 (2020).
– reference: 43) K. Ujihara, M. Yoshimoto, K. Wada, M. Takahashi, I. Suda; “Enhancement of DPPH-radical scavenging activity in heat-processed sugarcane Molasses” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 60, 159-164 (2013).
– reference: 41) N. Hirose, G. Maeda, K. Takara, K. Wada; “Changes in the physicochemical and flavor characteristics of the Okinawan brown sugar “kokuto” during storage at ambient temperature” (in Japanese). Food Preserv. Sci., 41, 253-259 (2015).
– reference: 39) K. Ishihara, A. Matsunaga, T. Miyoshi, K. Nakamura, T. Nakayama, S. Ito, H. Koga; Formation of acrylamide in a processed food model system, and examination of inhibitory conditions. J. Food Hyg. Soc. Japan, 46, 33-39 (2005).
– reference: 40) K. Tsutsumiuchi, M. Hibino, M. Kambe, N. Okajima, M. Okada, J. Miwa, H. Taniguchi; Effect of carbohydrates on formation of acrylamide in cooked food models. J. Appl. Glycosci., 52, 219-224 (2005).
– reference: 10) M. Kinefuchi, M. Sekiya, A. Yamazaki, K. Yamamoto; “Change in viable bacteria count in brown rice containing accumulated GABA by high pressure treatment, and properties of processed brown rice” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 46, 329-333 (1999).
– reference: 23) J. J. Knol, W. A. M. Van Loon, J. P. H. Linssen, A.-L. Ruck, M. A. J. S. Van Boekel, A. G. J. Voragen; Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. J. Agric. Food Chem., 53, 6133-6139 (2005).
– reference: 38) S. Ehling, M. Hengel, T. Shibamoto; “Chemistry and safety of acrylamide in food. Advances in Experimental Medicine and Biology” vol. 561, M. Friedman, D. S. Mottram ed., Springer, New York, US, 2005, p. 223.
– reference: 30) W. L. Claeys, K. De Vleeschouwer, M. F. Hendrickx; Effect of amino acid on acylamide formatoin and elimination kinetics. Biotechnol. Prog., 21, 1525-1530 (2005).
– reference: 34) M. Granvogl, J. Magnus, P. Koehler, P. Schieberle; Quantitation of 3-aminopropionamide in potatoes. A minor but potent precursor in acrylamide formation. J. Agric. Food Chem., 52, 4751-4757 (2004).
– reference: 31) C. T. Kim, E.-S. Hwang, H. J. Lee; Reducing acrylamide in fried snack products by adding amino acids. J. Food Sci., 70, C354-C358 (2005).
– reference: 8) A. Yamazaki, M. Kinefuchi, K. Yamamoto, A. Yamada; “Physical properties and fine structure of grains of high-pressure-treated rice after cooking” (in Japanese). Rev. High Pressure Sci. Technol., 5, 168-178 (1996).
– reference: 42) S. Honda, T. Masuda; “Polyphenols: Functional chemicals based on their chemical reactions, from antioxidation to inter-substance reactions” (in Japanese). Kagaku To Seibutsu, 53, 442-448 (2015).
– reference: 44) W. R. Jaffé; Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from analytical literature. J. Food Composition and Analysis, 43, 194-202 (2015).
– reference: 22) A. Kobayashi, S. Gomikawa, A. Oguro, S. Maeda, A. Yamazaki, S. Sato, H. Maekawa; Effects on acrylamide generation under heating conditions by addition of lysine and cysteine to non-centrifugal cane sugar. J. Food Sci. Technol. Res., 26, 673-680 (2020).
– reference: 6) FAO and WHO; “Safety evaluation of certain contaminants in food.” WHO Food Additives Series 63, FAO JECFA Monographs 8, the 72nd meeting of the Joint FAO/WHO Expert Committee on Food Additives, 2011, p. 1.
– reference: 37) I. Blank, F. Robert, T. Goldmann, P. Pollien, N. Varga, S. Devaud, F. Saucy, T. Huynh-Ba, H. Stadler; “Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology” vol. 561, M. Friedman, D. S. Mottram. Ed., Springer, New York, US, 2005, p. 171.
– reference: 9) M. Kinefuchi, M Sekiya, A. Yamazaki, K. Yamamoto: “Accumulation of GABA in brown rice by high pressure treatment” (in Japanese). J. Jpn. Soc. Food Sci. Technol., 46, 323-328 (1999).
– reference: 28) K. Kawai, T. Hagiwara, R. Takai, T. Suzuki; “Effect of reducing sugar on the Maillard reaction rate of freeze-dried food in the glassy state” (in Japanese). Japan J. Food Eng., 6, 59-64 (2005).
– reference: 27) S. I. F. S. Martins, W. M. F. Jongen, M. A. J. S. Van Boekel; A review of Maillard reaction in food and implications to kinetic modelling. Trends Food. Sci. Technol., 11, 364-373 (2001).
– reference: 1) International Agency for Research on Cancer; Acrylamide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 60, 289-483 (1994).
– reference: 35) R. H. Stadler, F. Robert, S. Riediker, N. Varga, T. Davidek, S. Devaud, T. Goldmann, J. Hau, I. Blank; In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J. Agric. Food Chem., 52, 5550-5558 (2004).
– reference: 5) FAO and WHO; “Safety evaluation of certain contaminants in food.” WHO Food Additives Series 55, FAO Food and nutrition paper 82, the 64th meeting of the Joint FAO/WHO Expert Committee on Food Additives, 2006, p. 1.
– reference: 17) J. M. Ames; Application of the Maillard reaction in the food industry. Food Chem., 62, 431-439 (1998).
– reference: 25) F. J. Moreno, E. Molina, A. Olano, R. Lopez-Fandino; High-pressure effects on Maillard reaction between glucose and lysine, J. Agric. Food Chem., 51, 394-400 (2003).
– reference: 13) M. Ogino, T. Nishiumi; “Sterilization of heat-resistant spores by a combination of high-pressure and subsequent heat treatment” (in Japanese). Rev. High Pressure Sci. Technol., 25, 334-342 (2015).
– reference: 7) A. Sasagawa, M. Kinefuchi, A. Yamazaki, A. Yamada; “High pressure bioscience” (in Japanese), R. Hayashi, S. Kunugi, S. Shimada, A. Suzuki ed., San-ei Shuppan, Kyoto, Japan, 1994, p. 336.
– reference: 24) G. Maeda, I. Shimoji, T. Tedokon, H. Shimoji, K. Uechi, H. Ishimine, M. Sunagawa, J. Chinen, K. Degi, K. Miyagi, T. Ogi; “Comparison between non-centrifugal brown sugar (Kokuto) manufactured using cane juice alone and that manufactured using cane juice with cane top juice” (in Japanese). Okinawa Prefectural Agricultural Research Center Kenkyu Houkoku, 12, 14-20 (2018).
– reference: 33) D. V. Zyzak, R. A. Sanders, M. Stojanovic, D. H. Tallmadge, B. Eberhart, D. K. Ewald, D. C. Gruber, T. R. Morsch, M. A. Strothers, G. P. Rizzi, M. D. Villagran; Acrylamide formation mechanism in heated foods. J. Agric. Food Chem., 51, 4782-4787 (2003).
– reference: 15) T. Okazaki, K. Noguchi; “The way of autolytic hydrolysis under hydrostatic pressure and development of its equipment” (in Japanese). Jpn. J. Food Eng., 9, 239-250 (2008).
– reference: 21) M. Nakahara; “High pressure science for food” (in Japanese), R. Hayashi ed., San-ei Shuppan, Kyoto, Japan, 1991, p. 41.
– reference: 11) A. Sasagawa, Y. Naiki, S. Nagashima, M. Yamakura, A. Yamazaki, A. Yamada; “Process for producing brown rice with increased accumulation of GABA using high-pressure treatment and properties of GABA-increased brown rice” (in Japanese). J. Appl. Glycosci., 53, 27-33 (2006).
– reference: 16) A. Kobayashi, S. Gomikawa, A. Oguro, S. Maeda, A. Yamazaki, S. Sato, H. Maekawa; The effect of high hydrostatic pressure on acrylamide generation in aqueous reaction systems using asparagine and glucose. J. Food Sci. Technol. Res., 25, 587-596 (2019).
– reference: 36) M. Granvogl, P. Schieberle; Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. J. Agric. Food Chem., 54, 5933-5938 (2006).
SSID ssj0003306328
Score 2.3048022
Snippet 100 MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH 9.0の等モル濃度のアスパラギン–グルコース水溶液を用いて検討した.常圧,60または90...
100MPa未満の静水圧がアクリルアミドの生成とメイラード反応に及ぼす効果を,pH9.0の等モル濃度のアスパラギン-グルコース水溶液を用いて検討した。常圧,60または90MPaの...
SourceID affrit
jstage
SourceType Open Access Repository
Publisher
StartPage 87
Title 静水圧とシステイン添加によるアクリルアミドの生成抑制
URI https://www.jstage.jst.go.jp/article/jsfe/22/4/22_21593/_article/-char/ja
https://agriknowledge.affrc.go.jp/RN/2030940685
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本食品工学会誌, 2021/12/15, Vol.22(4), pp.87-101
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1884-5924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306328
  issn: 1345-7942
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9RAFA9tvXgRRcX6jx6cU9mazEwyM8fJNqUoFoQWegvJblLsYVu27cVbsyC1XhS8CEpFBMWCCopF_DhDV_wWvjdJdreyiBXC8Pbl5c3we8m8N7MzbxznluIiUK22aFCRJw2e-hy-OeY3POAHfp65SduutlgKFlf4nVV_dWLy3siqpZ3tdK71cOy-kv-xKvDArrhL9hSWHSgFBtBgXyjBwlD-k41JpIiaJ0qRKCChS0JOIp-oJtGCRAyCRKKlJSgJRU0oS8AVVBzNK07IrB5BwhD1SE20W-sJK2FZK5Q1R9OaWKj0aF0Tf8gwomoZqWrNEYkEUdzeClC_ci2hifJsMyQJgxMxNPj3zuxIJL1gMzMPEyvWLxE-DahIq1hFBLMBN2exOmiq5kMxTkKNTUDwPAuDjzAAtFZeESmIbCJXA9ruGP0KMVO0lgd1iCEgGREZnZD38EICgviolIcf86TKgVlNwFAPF7OUW1Arn8E4Zv3kJ5wKpSMfDx_xEFV4UcYans3vMMaNsfL8hK08m4OYrDxDclxe8DzvtuK1jXh9M3a9GONlaIw76Zyh4OTwJJO79-VgypHB8JDZ04YHTa52rGJ9t4e1QTSGmh_gWGsdBin1Akcbcy2fd85VJp7R5Zt_wZnIOhedpV-vXvQ_fz1--c7svjfFkSm-m94jU7w1vS_9ox_H-6_N7qEp9kzxxBRvTPHJ9D6Y3iHSvQPTe2x2P_58ftDfe9rff3a89-2Ss7IQLTcXG9WpII2EUpk0RO5Cv8MSiLTbvkhSmnhKpLkMGEtEloNPamFGqhSodp4x6uOI3Y58mNuCcJZddqY6G53sijOTpikTNPeZgj4K_3JXiZdA14p58WjmZdOOW-IQJ2vd4SR3_Bfopx1VIhZvltli4qp3iBHemNKYY2FhHtzCDZbxenL19NVdc84OX8nrztR2dye7AVHydnrT2v432Iak6Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%99%E6%B0%B4%E5%9C%A7%E3%81%A8%E3%82%B7%E3%82%B9%E3%83%86%E3%82%A4%E3%83%B3%E6%B7%BB%E5%8A%A0%E3%81%AB%E3%82%88%E3%82%8B%E3%82%A2%E3%82%AF%E3%83%AA%E3%83%AB%E3%82%A2%E3%83%9F%E3%83%89%E3%81%AE%E7%94%9F%E6%88%90%E6%8A%91%E5%88%B6&rft.jtitle=Japan+Journal+of+Food+Engineering&rft.au=%E5%B0%8F%E6%9E%97%2C+%E7%AF%A4&rft.au=%E4%BA%94%E5%91%B3%E5%B7%9D%2C+%E9%87%8C%E5%AD%90&rft.au=%E5%B0%8F%E9%BB%92%2C+%E9%BA%BB%E7%BE%8E&rft.au=%E5%B1%B1%E5%B4%8E%2C+%E5%BD%AC&rft.date=2021-12-15&rft.issn=1345-7942&rft.volume=22&rft.issue=4&rft.spage=87&rft.epage=103&rft_id=info:doi/10.11301%2Fjsfe.21593&rft.externalDocID=oai_affrc_go_jp_01_00953450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-7942&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-7942&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-7942&client=summon