Mathematics for Computer Graphics

John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded fifth edition.The first five chapters cover a general intro...

Full description

Saved in:
Bibliographic Details
Main Author Vince, John
Format eBook Book
LanguageEnglish
Published London Springer Nature 2017
Springer
Springer London, Limited
Springer London
Edition5
SeriesUndergraduate Topics in Computer Science
Subjects
Online AccessGet full text
ISBN9781447173366
1447173368
1447173341
9781447173342
ISSN1863-7310
2197-1781
DOI10.1007/978-1-4471-7336-6

Cover

Abstract John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded fifth edition.The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on vectors, matrix algebra, transforms, interpolation, curves and patches, analytic geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new topic of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples.Mathematics for Computer Graphics covers all of the key areas of the subject, including:· Number sets· Algebra· Trigonometry· Coordinate systems· Determinants· Vectors· Quaternions· Matrix algebra· Geometric transforms· Interpolation· Curves and surfaces· Analytic geometry· Barycentric coordinates· Geometric algebra· Differential calculus· Integral calculusThis fifth edition contains over 120 worked examples and over 320 colour illustrations, which are central to the author's descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics, giving a fascinating insight into the design of computer graphics software and setting the scene for further reading of more advanced books and technical research papers.
AbstractList John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded fifth edition.The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on vectors, matrix algebra, transforms, interpolation, curves and patches, analytic geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new topic of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples.Mathematics for Computer Graphics covers all of the key areas of the subject, including:· Number sets· Algebra· Trigonometry· Coordinate systems· Determinants· Vectors· Quaternions· Matrix algebra· Geometric transforms· Interpolation· Curves and surfaces· Analytic geometry· Barycentric coordinates· Geometric algebra· Differential calculus· Integral calculusThis fifth edition contains over 120 worked examples and over 320 colour illustrations, which are central to the author's descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics, giving a fascinating insight into the design of computer graphics software and setting the scene for further reading of more advanced books and technical research papers.
Author Vince, John
Author_xml – sequence: 1
  fullname: Vince, John
BackLink https://cir.nii.ac.jp/crid/1130282272708731648$$DView record in CiNii
BookMark eNpdkMtOwzAQRQ0URAv9AHYFISEWoTN2_MgSKl4SiA1iazmuSwNpXOIUfh-bsIGNLZ05d-yZERk0vnGEHCFcIICcFlJlmOW5xEwyJjKxRcaRYSIJiG0ypFjIDCPc-VcbkCEqwWISYZeMKKAscqaY2CMjBCFQxUqxT8YhvAEAFiwaYkiOH023dCvTVTZMFr6dzPxqvelcO7ltzXoZ6SHZXZg6uPHvfUBebq6fZ3fZw9Pt_ezyITMUBfAM54qXec6RgbDCSGrAmpJRU9py4XIr51yKgrLIFFdgmDOoQFEr5nOTxw8dkPO-sQnv7issfd0F_Vm70vv3oP9MG91p74Z1WzWvrtW9haDTLpOtUSdfp4BOibM-sW79x8aFTv80tq7pWlPr66sZ5wUAY9E87c2mqrSt0olxKKoolVRCWqTIVdROes2aYOqo6ZVv_GvaWtCccVbEl78BNPl-1Q
ContentType eBook
Book
Copyright Springer-Verlag London Ltd. 2017
Copyright_xml – notice: Springer-Verlag London Ltd. 2017
DBID I4C
RYH
DEWEY 005
DOI 10.1007/978-1-4471-7336-6
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781447173366
1447173368
EISSN 2197-1781
Edition 5
5th ed. 2017
5th ed. 2017.
ExternalDocumentID 9781447173366
69602
EBC5590033
BB24585726
5353973
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABHTH
ABQUB
ACDJR
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CRSEL
CZZ
I4C
IEZ
SBO
SWYDZ
TPJZQ
Z83
RYH
ID FETCH-LOGICAL-a21605-1d85b4451306c6a72a0cab32abcbfe4c7d576923ab38580a3ea18082c6dda4193
ISBN 9781447173366
1447173368
1447173341
9781447173342
ISSN 1863-7310
IngestDate Tue Mar 04 07:13:52 EST 2025
Wed Sep 17 03:17:47 EDT 2025
Tue Apr 22 04:17:19 EDT 2025
Thu Jun 26 21:07:06 EDT 2025
Tue Mar 04 07:31:31 EST 2025
IsPeerReviewed false
IsScholarly false
LCCN 2017943836
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a21605-1d85b4451306c6a72a0cab32abcbfe4c7d576923ab38580a3ea18082c6dda4193
Notes Includes index
OCLC 1066187319
PQID EBC5590033
PageCount 512
ParticipantIDs askewsholts_vlebooks_9781447173366
springer_books_10_1007_978_1_4471_7336_6
proquest_ebookcentral_EBC5590033
nii_cinii_1130282272708731648
casalini_monographs_5353973
PublicationCentury 2000
PublicationDate 2017
c2017
20170830
2017-08-28
PublicationDateYYYYMMDD 2017-01-01
2017-08-30
2017-08-28
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: Netherlands
– name: London
PublicationSeriesTitle Undergraduate Topics in Computer Science
PublicationSeriesTitleAlternate Undergraduate Topics Computer Sci.
PublicationYear 2017
Publisher Springer Nature
Springer
Springer London, Limited
Springer London
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer London, Limited
– name: Springer London
RelatedPersons Pitts, Andrew
Kozen, Dexter C.
Breitman, Karin
Skiena, Steven S
Abramsky, Samson
Stewart, Iain
Hankin, Chris
Mackie, Ian
Riis Nielson, Hanne
RelatedPersons_xml – sequence: 1
  givenname: Ian
  surname: Mackie
  fullname: Mackie, Ian
– sequence: 2
  givenname: Samson
  surname: Abramsky
  fullname: Abramsky, Samson
– sequence: 3
  givenname: Karin
  surname: Breitman
  fullname: Breitman, Karin
– sequence: 4
  givenname: Chris
  surname: Hankin
  fullname: Hankin, Chris
– sequence: 5
  givenname: Dexter C.
  surname: Kozen
  fullname: Kozen, Dexter C.
– sequence: 6
  givenname: Andrew
  surname: Pitts
  fullname: Pitts, Andrew
– sequence: 7
  givenname: Hanne
  surname: Riis Nielson
  fullname: Riis Nielson, Hanne
– sequence: 8
  givenname: Steven S
  surname: Skiena
  fullname: Skiena, Steven S
– sequence: 9
  givenname: Iain
  surname: Stewart
  fullname: Stewart, Iain
SSID ssj0001930176
Score 1.969404
Snippet John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality,...
SourceID askewsholts
springer
proquest
nii
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Computer Graphics
Computer graphics -- Mathematics
Computer programming, programs, data
Computer Science
Mathematical Applications in Computer Science
TableOfContents 7.4.12 The Right-Hand Rule -- 7.5 Deriving a Unit Normal Vector for a Triangle -- 7.6 Surface Areas -- 7.6.1 Calculating 2D Areas -- 7.7 Summary -- 7.8 Worked Examples -- 7.8.1 Position Vector -- 7.8.2 Unit Vector -- 7.8.3 Vector Magnitude -- 7.8.4 Angle Between Two Vectors -- 7.8.5 Vector Product -- 8 Matrix Algebra -- 8.1 Introduction -- 8.2 Background -- 8.3 Matrix Notation -- 8.3.1 Matrix Dimension or Order -- 8.3.2 Square Matrix -- 8.3.3 Column Vector -- 8.3.4 Row Vector -- 8.3.5 Null Matrix -- 8.3.6 Unit Matrix -- 8.3.7 Trace -- 8.3.8 Determinant of a Matrix -- 8.3.9 Transpose -- 8.3.10 Symmetric Matrix -- 8.3.11 Antisymmetric Matrix -- 8.4 Matrix Addition and Subtraction -- 8.4.1 Scalar Multiplication -- 8.5 Matrix Products -- 8.5.1 Row and Column Vectors -- 8.5.2 Row Vector and a Matrix -- 8.5.3 Matrix and a Column Vector -- 8.5.4 Square Matrices -- 8.5.5 Rectangular Matrices -- 8.6 Inverse Matrix -- 8.6.1 Inverting a Pair of Matrices -- 8.7 Orthogonal Matrix -- 8.8 Diagonal Matrix -- 8.9 Summary -- 8.10 Worked Examples -- 8.10.1 Matrix Inversion -- 8.10.2 Identity Matrix -- 8.10.3 Solving Two Equations Using Matrices -- 8.10.4 Solving Three Equations Using Matrices -- 8.10.5 Solving Two Complex Equations -- 8.10.6 Solving Three Complex Equations -- 8.10.7 Solving Two Complex Equations -- 8.10.8 Solving Three Complex Equations -- 9 Geometric Transforms -- 9.1 Introduction -- 9.2 Background -- 9.3 2D Transforms -- 9.3.1 Translation -- 9.3.2 Scaling -- 9.3.3 Reflection -- 9.4 Transforms as Matrices -- 9.4.1 Systems of Notation -- 9.5 Homogeneous Coordinates -- 9.5.1 2D Translation -- 9.5.2 2D Scaling -- 9.5.3 2D Reflections -- 9.5.4 2D Shearing -- 9.5.5 2D Rotation -- 9.5.6 2D Scaling -- 9.5.7 2D Reflection -- 9.5.8 2D Rotation About an Arbitrary Point -- 9.6 3D Transforms -- 9.6.1 3D Translation -- 9.6.2 3D Scaling -- 9.6.3 3D Rotation
9.6.4 Gimbal Lock -- 9.6.5 Rotating About an Axis -- 9.6.6 3D Reflections -- 9.7 Change of Axes -- 9.7.1 2D Change of Axes -- 9.7.2 Direction Cosines -- 9.7.3 3D Change of Axes -- 9.8 Positioning the Virtual Camera -- 9.8.1 Direction Cosines -- 9.8.2 Euler Angles -- 9.9 Rotating a Point About an Arbitrary Axis -- 9.9.1 Matrices -- 9.9.2 Quaternions -- 9.9.3 Adding and Subtracting Quaternions -- 9.9.4 Multiplying Quaternions -- 9.9.5 Pure Quaternion -- 9.9.6 The Inverse Quaternion -- 9.9.7 Unit Quaternion -- 9.9.8 Rotating Points About an Axis -- 9.9.9 Roll, Pitch and Yaw Quaternions -- 9.9.10 Quaternions in Matrix Form -- 9.9.11 Frames of Reference -- 9.10 Transforming Vectors -- 9.11 Determinants -- 9.12 Perspective Projection -- 9.13 Summary -- 9.14 Worked Examples -- 9.14.1 2D Scaling Transform -- 9.14.2 2D Scale and Translate -- 9.14.3 3D Scaling Transform -- 9.14.4 2D Rotation -- 9.14.5 2D Rotation About a Point -- 9.14.6 Determinant of the Rotate Transform -- 9.14.7 Determinant of the Shear Transform -- 9.14.8 Yaw, Pitch and Roll Transforms -- 9.14.9 3D Rotation About an Axis -- 9.14.10 3D Rotation Transform Matrix -- 9.14.11 2D Change of Axes -- 9.14.12 3D Change of Axes -- 9.14.13 Rotate a Point About an Axis -- 9.14.14 Perspective Projection -- 10 Interpolation -- 10.1 Introduction -- 10.2 Background -- 10.3 Linear Interpolation -- 10.4 Non-linear Interpolation -- 10.4.1 Trigonometric Interpolation -- 10.4.2 Cubic Interpolation -- 10.5 Interpolating Vectors -- 10.6 Interpolating Quaternions -- 10.7 Summary -- 11 Curves and Patches -- 11.1 Introduction -- 11.2 Background -- 11.3 The Circle -- 11.4 The Ellipse -- 11.5 Bézier Curves -- 11.5.1 Bernstein Polynomials -- 11.5.2 Quadratic Bézier Curves -- 11.5.3 Cubic Bernstein Polynomials -- 11.6 A Recursive Bézier Formula -- 11.7 Bézier Curves Using Matrices -- 11.7.1 Linear Interpolation
13.4 Ratios and Proportion
Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Mathematics for Computer Graphics -- 1.2 Understanding Mathematics -- 1.3 What Makes Mathematics Difficult? -- 1.4 Does Mathematics Exist Outside Our Brains? -- 1.5 Symbols and Notation -- 2 Numbers -- 2.1 Introduction -- 2.2 Background -- 2.3 Counting -- 2.4 Sets of Numbers -- 2.5 Zero -- 2.6 Negative Numbers -- 2.6.1 The Arithmetic of Positive and Negative Numbers -- 2.7 Observations and Axioms -- 2.7.1 Commutative Law -- 2.7.2 Associative Law -- 2.7.3 Distributive Law -- 2.8 The Base of a Number System -- 2.8.1 Background -- 2.8.2 Octal Numbers -- 2.8.3 Binary Numbers -- 2.8.4 Hexadecimal Numbers -- 2.8.5 Adding Binary Numbers -- 2.8.6 Subtracting Binary Numbers -- 2.9 Types of Numbers -- 2.9.1 Natural Numbers -- 2.9.2 Integers -- 2.9.3 Rational Numbers -- 2.9.4 Irrational Numbers -- 2.9.5 Real Numbers -- 2.9.6 Algebraic and Transcendental Numbers -- 2.9.7 Imaginary Numbers -- 2.9.8 Complex Numbers -- 2.9.9 Transcendental and Algebraic Numbers -- 2.9.10 Infinity -- 2.10 Summary -- 2.11 Worked Examples -- 2.11.1 Algebraic Expansion -- 2.11.2 Binary Subtraction -- 2.11.3 Complex Numbers -- 2.11.4 Complex Rotation -- 3 Algebra -- 3.1 Introduction -- 3.2 Background -- 3.2.1 Solving the Roots of a Quadratic Equation -- 3.3 Indices -- 3.3.1 Laws of Indices -- 3.4 Logarithms -- 3.5 Further Notation -- 3.6 Functions -- 3.6.1 Explicit and Implicit Equations -- 3.6.2 Function Notation -- 3.6.3 Intervals -- 3.6.4 Function Domains and Ranges -- 3.6.5 Odd and Even Functions -- 3.6.6 Power Functions -- 3.7 Summary -- 3.8 Worked Examples -- 3.8.1 Algebraic Manipulation -- 3.8.2 Solving a Quadratic Equation -- 3.8.3 Factorising -- 4 Trigonometry -- 4.1 Introduction -- 4.2 Background -- 4.3 Units of Angular Measurement -- 4.4 The Trigonometric Ratios -- 4.4.1 Domains and Ranges
4.5 Inverse Trigonometric Ratios -- 4.6 Trigonometric Identities -- 4.7 The Sine Rule -- 4.8 The Cosine Rule -- 4.9 Compound-Angle Identities -- 4.9.1 Double-Angle Identities -- 4.9.2 Multiple-Angle Identities -- 4.9.3 Half-Angle Identities -- 4.10 Perimeter Relationships -- 4.11 Summary -- 5 Coordinate Systems -- 5.1 Introduction -- 5.2 Background -- 5.3 The Cartesian Plane -- 5.4 Function Graphs -- 5.5 Shape Representation -- 5.5.1 2D Polygons -- 5.5.2 Area of a Shape -- 5.6 Theorem of Pythagoras in 2D -- 5.7 3D Cartesian Coordinates -- 5.7.1 Theorem of Pythagoras in 3D -- 5.8 Polar Coordinates -- 5.9 Spherical Polar Coordinates -- 5.10 Cylindrical Coordinates -- 5.11 Summary -- 5.12 Worked Examples -- 5.12.1 Area of a Shape -- 5.12.2 Distance Between Two Points -- 5.12.3 Polar Coordinates -- 5.12.4 Spherical Polar Coordinates -- 5.12.5 Cylindrical Coordinates -- 6 Determinants -- 6.1 Introduction -- 6.2 Linear Equations with Two Variables -- 6.3 Linear Equations with Three Variables -- 6.3.1 Sarrus's Rule -- 6.4 Mathematical Notation -- 6.4.1 Matrix -- 6.4.2 Order of a Determinant -- 6.4.3 Value of a Determinant -- 6.4.4 Properties of Determinants -- 6.5 Summary -- 6.6 Worked Examples -- 6.6.1 Determinant Expansion -- 6.6.2 Complex Determinant -- 6.6.3 Simple Expansion -- 6.6.4 Simultaneous Equations -- 7 Vectors -- 7.1 Introduction -- 7.2 Background -- 7.3 2D Vectors -- 7.3.1 Vector Notation -- 7.3.2 Graphical Representation of Vectors -- 7.3.3 Magnitude of a Vector -- 7.4 3D Vectors -- 7.4.1 Vector Manipulation -- 7.4.2 Scaling a Vector -- 7.4.3 Vector Addition and Subtraction -- 7.4.4 Position Vectors -- 7.4.5 Unit Vectors -- 7.4.6 Cartesian Vectors -- 7.4.7 Products -- 7.4.8 Scalar Product -- 7.4.9 The Dot Product in Lighting Calculations -- 7.4.10 The Scalar Product in Back-Face Detection -- 7.4.11 The Vector Product
11.8 B-Splines -- 11.8.1 Uniform B-Splines -- 11.8.2 Continuity -- 11.8.3 Non-uniform B-Splines -- 11.8.4 Non-uniform Rational B-Splines -- 11.9 Surface Patches -- 11.9.1 Planar Surface Patch -- 11.9.2 Quadratic Bézier Surface Patch -- 11.9.3 Cubic Bézier Surface Patch -- 11.10 Summary -- 12 Analytic Geometry -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Angles -- 12.2.2 Intercept Theorems -- 12.2.3 Golden Section -- 12.2.4 Triangles -- 12.2.5 Centre of Gravity of a Triangle -- 12.2.6 Isosceles Triangle -- 12.2.7 Equilateral Triangle -- 12.2.8 Right Triangle -- 12.2.9 Theorem of Thales -- 12.2.10 Theorem of Pythagoras -- 12.2.11 Quadrilateral -- 12.2.12 Trapezoid -- 12.2.13 Parallelogram -- 12.2.14 Rhombus -- 12.2.15 Regular Polygon -- 12.2.16 Circle -- 12.3 2D Analytic Geometry -- 12.3.1 Equation of a Straight Line -- 12.3.2 The Hessian Normal Form -- 12.3.3 Space Partitioning -- 12.3.4 The Hessian Normal Form from Two Points -- 12.4 Intersection Points -- 12.4.1 Intersecting Straight Lines -- 12.4.2 Intersecting Line Segments -- 12.5 Point Inside a Triangle -- 12.5.1 Area of a Triangle -- 12.5.2 Hessian Normal Form -- 12.6 Intersection of a Circle with a Straight Line -- 12.7 3D Geometry -- 12.7.1 Equation of a Straight Line -- 12.7.2 Intersecting Two Straight Lines -- 12.8 Equation of a Plane -- 12.8.1 Cartesian Form of the Plane Equation -- 12.8.2 General Form of the Plane Equation -- 12.8.3 Parametric Form of the Plane Equation -- 12.8.4 Converting from the Parametric to the General Form -- 12.8.5 Plane Equation from Three Points -- 12.9 Intersecting Planes -- 12.9.1 Intersection of Three Planes -- 12.9.2 Angle Between Two Planes -- 12.9.3 Angle Between a Line and a Plane -- 12.9.4 Intersection of a Line with a Plane -- 12.10 Summary -- 13 Barycentric Coordinates -- 13.1 Introduction -- 13.2 Background -- 13.3 Ceva's Theorem
Title Mathematics for Computer Graphics
URI http://digital.casalini.it/9781447173366
https://cir.nii.ac.jp/crid/1130282272708731648
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5590033
http://link.springer.com/10.1007/978-1-4471-7336-6
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781447173366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBWJc6lPaZJSJ03ZhBwKYYt39eljHVxCaHNKTW5C0mrBtGyh6_TQX58neWWv3UJpL8IWiyTeCGlGM_OGkKvCVV7WTObSw1xlnvt8As05N7aiFafVuDYh3_nzvbj9wu4e-ePmjSxmlyzte_frj3kl_yNV9EGuIUv2HyS7HhQd-A35ooWE0e4ov-u_Xe2lNdlqpFOIgeGhNsN15J_uBbDPF016Je9CbjsLv5A7Fn564duy_GAHBf85XVFT_XYObkIfYCHiyzywHuY7nNPxFptOSwaTQZZin-xLCfv14MPs7tN881A1wRkgRUyK6-YsEldWWkNyF3eMvVtzDsnQtF9xYuM0X7bh-jetCVmfuM2bxWJLs99xRsc7_uGQDELex0uy55sjMuzxNB6Tix7eGfDOEt5ZwvuEzD_OHm5u8662RG7KQgT21UpxG9jZYDM5YWRpxs5YWhrrbO2ZkxUsMWi_6FNcjQ31plDQl5yoKsMAyisyaL43_jXJ8JGZsNrYCWfM1qWqqZdGMeVcUF_tiFz2ENA_v0U_eKt7EAoxImcJGI1tuuIrbzWnHBojHZFzYKXdIrRFcDZDsYPqOVah8hhTI5IlFHUcvQvt1bPpDQ-FYSmGeJfQ1av5E2M11qELHVaiw1K0OP3LbGfkxWafviGD5Y8nfw7dbGnfdrvnGVdPKio
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Mathematics+for+computer+graphics&rft.au=Vince%2C+John&rft.date=2017-01-01&rft.pub=Springer&rft.isbn=9781447173342&rft_id=info:doi/10.1007%2F978-1-4471-7336-6&rft.externalDocID=BB24585726
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814471%2F9781447173366.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4471-7336-6