Multi-level magnetic RAM using domain wall shift for energy-efficient, high-density caches

Spin-based devices promise to revolutionize computing platforms by enabling high-density, low-leakage memories. However, stringent tradeoffs between critical design metrics such as read and write stability, reliability, density, performance and energy-efficiency limit the efficiency of conventional...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2013 International Symposium on Low Power Electronics and Design pp. 64 - 69
Main Authors Sharad, Mrigank, Venkatesan, Rangharajan, Raghunathan, Anand, Roy, Kaushik
Format Conference Proceeding
LanguageEnglish
Published Piscataway, NJ, USA IEEE Press 04.09.2013
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN1479912352
9781479912353
DOI10.5555/2648668.2648685

Cover

More Information
Summary:Spin-based devices promise to revolutionize computing platforms by enabling high-density, low-leakage memories. However, stringent tradeoffs between critical design metrics such as read and write stability, reliability, density, performance and energy-efficiency limit the efficiency of conventional spin-transfer- torque devices and bit-cells. We propose a new multi-level cell design with domain wall magnets (DWM-MLC) that significantly improves upon the read/write performance, density, and write energy consumption of conventional spin memories. The fundamental design tradeoff between read and write operations are addressed in DWM-MLC by decoupling the read and write paths, thereby allowing separate optimization for reads and writes. A thicker tunneling oxide is used for higher readability, while a domain-wall-shift (DWS) based write mechanism is used to improve write speed and energy. The storage of multiple bits per cell and the ability to use smaller transistors lead to a net improvement in density compared to conventional spin memories. We perform a systematic evaluation of DWM-MLC at different levels of design abstraction. At the circuit level, DWM-MLC achieves 2X improvement in density, read energy and read latency over its 1-bit counterpart. We evaluate an "all-spin" cache hierarchy that uses DWM-MLC for both L1 and L2, resulting in 4.4X (1.7X) area improvement and 10X (2X) energy reduction at isoperformance over SRAM (STT-MRAM).
ISBN:1479912352
9781479912353
DOI:10.5555/2648668.2648685