Injection mold design engineering
Injection Mold Design Engineering provides a structured methodology and scientific basis for engineering injection molds. The topics are presented in a top-down manner, beginning with introductory definitions and the big picture before proceeding to layout and detailed design of molds. The book prov...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Munich :
Hanser,
[2022]
|
Edition: | 3rd edition. |
Subjects: | |
ISBN: | 9781569908921 1569908923 9781569908914 |
Physical Description: | 1 online resource. |
LEADER | 12168cam a2200409 i 4500 | ||
---|---|---|---|
001 | kn-on1347121605 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 221010s2022 gw ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCO |d SFB |d OCLCL | ||
020 | |a 9781569908921 |q (electronic bk.) | ||
020 | |a 1569908923 |q (electronic bk.) | ||
020 | |z 9781569908914 | ||
035 | |a (OCoLC)1347121605 | ||
100 | 1 | |a Kazmer, David, |e author. | |
245 | 1 | 0 | |a Injection mold design engineering / |c David O. Kazmer. |
250 | |a 3rd edition. | ||
264 | 1 | |a Munich : |b Hanser, |c [2022] | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Intro -- Preface -- Contents -- Nomenclature -- 1 Introduction -- 1.1 Overview of the Injection Molding Process -- 1.2 Mold Functions -- 1.3 Mold Structures -- 1.3.1 External View of Mold -- 1.3.2 View of Mold during Part Ejection -- 1.3.3 Mold Cross-Section and Function -- 1.4 Other Common Mold Types -- 1.4.1 Three-Plate, Multicavity Family Mold -- 1.4.2 Hot Runner, Multigated, Single-Cavity Mold -- 1.4.3 Comparison -- 1.5 The Mold Development Process -- 1.6 Mold Standards -- 1.7 Chapter Review -- 2 Plastic Part Design -- 2.1 The Product Development Process -- 2.1.1 Product Definition -- 2.1.2 Product Design -- 2.1.3 Development -- 2.1.4 Scale-Up and Launch -- 2.1.5 Role of Mold Design in Manufacturing Strategy -- 2.2 Prototyping Strategy -- 2.2.1 3D Printing by Material Extrusion (Fused Deposition Modeling) -- 2.2.2 3D Printing by Selective Laser Sintering -- 2.2.3 3D Printing by Stereolithography, Digital Light Processing, and Continuous Liquid Interface Production -- 2.2.4 3D Printing by PolyJet and Multi Jet Fusion -- 2.3 Design Requirements -- 2.3.1 Application Engineering Information -- 2.3.2 Computer-Aided Engineering (CAE) -- 2.3.3 Production Planning -- 2.3.4 End-Use Requirements -- 2.3.5 Design for Manufacturing and Assembly -- 2.3.6 Plastic Material Properties -- 2.4 Design for Injection Molding -- 2.4.1 Uniform Wall Thickness -- 2.4.2 Rib Design -- 2.4.3 Boss Design -- 2.4.4 Corner Design -- 2.4.5 Surface Finish and Textures -- 2.4.6 Draft -- 2.4.7 Undercuts -- 2.5 Sustainability -- 2.6 Chapter Review -- 3 Mold Procurement -- 3.1 Overview -- 3.2 The Procurement Process -- 3.3 Molded Part Cost Estimation -- 3.3.1 Mold Cost per Part -- 3.3.2 Material Cost per Part -- 3.3.3 Processing Cost per Part -- 3.3.4 Defect Cost per Part -- 3.4 Mold Cost Estimation -- 3.4.1 Mold Base Cost Estimation -- 3.4.2 Cavity Cost Estimation. | |
505 | 8 | |a 3.4.2.1 Insert Cost Estimation -- 3.4.2.2 Inserts Discount Factor -- 3.4.2.3 Insert Cost Machining Factors -- 3.4.2.4 Insert Cost Finishing Factors -- 3.4.3 Mold Customization -- 3.5 Rapid and Additive Manufacturing -- 3.5.1 Common Additively Manufactured Materials -- 3.5.2 Additive Manufacturing Process Performance Metrics -- 3.5.3 Design for Additive Manufacturing Guidelines -- 3.5.4 Preferred Workflow and File Formats -- 3.6 Mold Selection by Breakeven Analysis -- 3.7 Chapter Review -- 4 Mold Layout Design -- 4.1 Parting Plane Design -- 4.1.1 Determine Mold Opening Direction -- 4.1.2 Determine Parting Line -- 4.1.3 Parting Plane -- 4.1.4 Shut-Offs -- 4.2 Cavity and Core Insert Creation -- 4.2.1 Height Dimension -- 4.2.2 Length and Width Dimensions -- 4.2.3 Adjustments -- 4.3 Mold Base Selection -- 4.3.1 Cavity Layouts -- 4.3.2 Mold Base Sizing -- 4.3.3 Molding Machine Compatibility -- 4.3.4 Mold Base Suppliers -- 4.4 Material Selection -- 4.4.1 Strength vs. Heat Transfer -- 4.4.2 Hardness vs. Machinability -- 4.4.3 Material Summary -- 4.4.4 Surface Treatments -- 4.5 Chapter Review -- 5 Cavity Filling Analysis and Design -- 5.1 Overview -- 5.2 Objectives in Cavity Filling -- 5.2.1 Complete Filling of Mold Cavities -- 5.2.2 Avoid Uneven Filling or Over-Packing -- 5.2.3 Control the Melt Flow -- 5.3 Viscous Flow -- 5.3.1 Shear Stress, Shear Rate, and Viscosity -- 5.3.2 Pressure Drop -- 5.3.3 Rheological Behavior -- 5.3.4 Newtonian Model -- 5.3.5 Power Law Model -- 5.4 Cavity Filling Analyses and Designs -- 5.4.1 Estimating the Processing Conditions -- 5.4.2 Estimating the Filling Pressure and Minimum Wall Thickness -- 5.4.3 Estimating Clamp Tonnage -- 5.4.4 Predicting Filling Patterns -- 5.4.5 Designing Flow Leaders -- 5.5 Process Simulation -- 5.5.1 Simulation Pre-Processing -- 5.5.2 Simulation Post-Processing -- 5.5.3 Discussion. | |
505 | 8 | |a 5.6 Chapter Review -- 6 Feed System Design -- 6.1 Overview -- 6.2 Objectives in Feed System Design -- 6.2.1 Conveying the Polymer Melt from Machine to Cavities -- 6.2.2 Impose Minimal Pressure Drop -- 6.2.3 Consume Minimal Material -- 6.2.4 Control Flow Rates -- 6.3 Feed System Types -- 6.3.1 Two-Plate Mold -- 6.3.2 Three-Plate Mold -- 6.3.3 Hot Runner Molds -- 6.4 Feed System Analysis -- 6.4.1 Determine Type of Feed System -- 6.4.2 Determine Feed System Layout -- 6.4.3 Estimate Pressure Drops -- 6.4.4 Calculate Runner Volume -- 6.4.5 Optimize Runner Diameters -- 6.4.6 Balance Flow Rates -- 6.4.7 Estimate Runner Cooling Times -- 6.4.8 Estimate Residence Time -- 6.5 Feed System Simulation -- 6.5.1 Hot Runners -- 6.5.2 Cold Runners -- 6.6 Practical Issues -- 6.6.1 Color Changes with Hot Runners -- 6.6.2 Runner Cross-Sections -- 6.6.3 Sucker Pins -- 6.6.4 Runner Shut-Offs -- 6.6.5 Standard Runner Sizes -- 6.6.6 Steel Safe Designs -- 6.7 Advanced Feed Systems -- 6.7.1 Insulated Runner -- 6.7.2 Stack Molds -- 6.7.3 Branched Runners -- 6.7.4 Dynamic Melt Control -- 6.8 Chapter Review -- 7 Gating Design -- 7.1 Objectives of Gating Design -- 7.1.1 Connecting the Runner to the Mold Cavity -- 7.1.2 Provide Automatic De-gating -- 7.1.3 Maintain Part Aesthetics -- 7.1.4 Avoid Excessive Shear or Pressure Drop -- 7.1.5 Control Pack Times -- 7.2 Common Gate Designs -- 7.2.1 Sprue Gate -- 7.2.2 Pin-Point Gate -- 7.2.3 Edge Gate -- 7.2.4 Tab Gate -- 7.2.5 Fan Gate -- 7.2.6 Flash/Diaphragm Gate -- 7.2.7 Tunnel/Submarine Gate -- 7.2.8 Thermal Gate -- 7.2.9 Valve Gate -- 7.3 The Gating Design Process -- 7.3.1 Determine Gate Location(s) -- 7.3.2 Determine Type of Gate -- 7.3.3 Calculate Shear Rates -- 7.3.4 Calculate Pressure Drop -- 7.3.5 Calculate Gate Freeze Time -- 7.3.6 Adjust Dimensions -- 7.3.7 Gate Verification by Simulation -- 7.4 Chapter Review -- 8 Venting. | |
505 | 8 | |a 8.1 Venting Design Objectives -- 8.1.1 Release Compressed Air -- 8.1.2 Contain Plastic Melt -- 8.1.3 Minimize Maintenance -- 8.2 Venting Analysis -- 8.2.1 Estimate Air Displacement and Rate -- 8.2.2 Identify Number and Location of Vents -- 8.2.3 Specify Vent Dimensions -- 8.3 Venting Designs -- 8.3.1 Vents on Parting Plane -- 8.3.2 Vents around Ejector Pins -- 8.3.3 Vents in Dead Pockets -- 8.3.4 Vents with Porous Metals -- 8.3.5 3D Printed Porous Inserts -- 8.4 Venting Best Practices -- 8.4.1 Venting Simulation -- 8.4.2 Vent Sensing -- 8.5 Chapter Review -- 9 Cooling System Design -- 9.1 Objectives in Cooling System Design -- 9.1.1 Maximize Heat Transfer Rates -- 9.1.2 Maintain Uniform Wall Temperature -- 9.1.3 Minimize Mold Cost -- 9.1.4 Minimize Volume and Complexity -- 9.1.5 Maximize Reliability -- 9.1.6 Facilitate Mold Usage -- 9.2 The Cooling System Design Process -- 9.2.1 Calculate the Required Cooling Time -- 9.2.2 Evaluate Required Heat Transfer Rate -- 9.2.3 Assess Coolant Flow Rate -- 9.2.4 Assess Cooling Line Diameter -- 9.2.5 Select Cooling Line Depth -- 9.2.6 Select Cooling Line Pitch -- 9.2.7 Cooling Line Routing -- 9.2.8 Cooling Simulation -- 9.3 Cooling System Designs -- 9.3.1 Cooling Line Networks -- 9.3.2 Cooling Inserts -- 9.3.3 Highly Conductive Inserts -- 9.3.4 Cooling of Slender Cores -- 9.3.4.1 Cooling Insert -- 9.3.4.2 Baffles -- 9.3.4.3 Bubblers -- 9.3.4.4 Heat Pipes -- 9.3.4.5 Conductive Pin -- 9.3.4.6 Interlocking Core with Air Channel -- 9.3.5 One-Sided Heat Flow -- 9.4 Conformal Cooling -- 9.4.1 Spiral and Serpentine Designs -- 9.4.2 Network Designs -- 9.4.3 Lattice and Generative Designs -- 9.4.4 Comparison and Discussion -- 9.5 Advanced Temperature Control -- 9.5.1 Pulsed Cooling -- 9.5.2 Conduction Heating -- 9.5.3 Induction Heating -- 9.5.4 Managed Heat Transfer -- 9.6 Chapter Review -- 10 Shrinkage and Warpage. | |
505 | 8 | |a 10.1 The Shrinkage and Warpage Analysis Process -- 10.1.1 Estimate Process Conditions -- 10.1.2 Model Compressibility Behavior -- 10.1.3 Assess Volumetric Shrinkage -- 10.1.4 Evaluate Isotropic Linear Shrinkage -- 10.1.5 Evaluate Anisotropic Shrinkage -- 10.1.6 Warpage Estimation -- 10.2 Shrinkage and Warpage Simulation -- 10.2.1 Methodology -- 10.2.2 Pressure and Temperature Prediction -- 10.2.3 Shrinkage Prediction -- 10.2.4 Warpage Prediction -- 10.3 Shrinkage and Warpage Design Practices -- 10.3.1 Gating Dependence -- 10.3.2 Injection Compression Molding -- 10.3.3 Processing Corrections -- 10.3.4 Semicrystalline Plastics -- 10.3.5 Effect of Fillers -- 10.3.6 Shrinkage Range Estimation -- 10.3.7 Mold Commissioning and Shrinkage Validation -- 10.3.8 "Steel Safe" Mold Design -- 10.3.9 Warpage Avoidance and Compensation -- 10.4 Chapter Review -- 11 Ejection System Design -- 11.1 Objectives in Ejection System Design -- 11.1.1 Allow Mold to Open -- 11.1.2 Transmit Ejection Forces to Moldings -- 11.1.3 Minimize Distortion of Moldings -- 11.1.4 Maximize Ejection Speed -- 11.1.5 Minimize Cooling Interference -- 11.1.6 Minimize Impact on Part Surfaces -- 11.1.7 Minimize Complexity and Cost -- 11.2 The Ejector System Design Process -- 11.2.1 Identify Mold Parting Surfaces -- 11.2.2 Estimate Ejection Forces -- 11.2.3 Determine Ejector Push Area and Perimeter -- 11.2.4 Specify Type, Number, and Size of Ejectors -- 11.2.5 Lay Out Ejectors -- 11.2.6 Detail Ejectors and Related Components -- 11.3 Ejector System Analyses and Designs -- 11.3.1 Ejector Pins -- 11.3.2 Ejector Blades -- 11.3.3 Ejector Sleeves -- 11.3.4 Stripper Plates -- 11.3.5 Elastic Deformation around Undercuts -- 11.3.6 Core Pulls -- 11.3.7 Slides -- 11.3.8 Early Ejector Return Systems -- 11.4 Advanced Ejection Systems -- 11.4.1 Split Cavity Molds -- 11.4.2 Collapsible Cores. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Injection Mold Design Engineering provides a structured methodology and scientific basis for engineering injection molds. The topics are presented in a top-down manner, beginning with introductory definitions and the big picture before proceeding to layout and detailed design of molds. The book provides very pragmatic analysis with worked examples that can be readily adapted to real-world product design applications. It will help students and practitioners to understand the inner workings of injection molds and encourage them to think outside the box in developing innovative and highly functional mold designs. Injection molding continues to be a core plastics manufacturing process, but now has competition from additive manufacturing for certain applications, and environmental concerns are in the spotlight. The 3rd edition addresses these issues, in particular with a new chapter on mold manufacturing strategy to provide an overview of the most common machining and additive manufacturing processes with cost and time models to guide the manufacturing strategy; updated and simplified break-even cost models to assist in the mold layout design (number of cavities and type of mold) vs. 3D printing; a new section on environmental concerns include mold design for recycled resins; and updates to the International Tolerance standards, and the new technology and simulation sections. | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Injection molding of plastics. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpIMDE0011/injection-mold-design?kpromoter=marc |y Full text |