Above ground storage tank oil spills : applications and case studies
Saved in:
Other Authors: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cambridge, MA :
Gulf Professional Publishing, an imprint of Elsevier,
2023.
|
Subjects: | |
ISBN: | 9780323885478 0323885470 0323857280 9780323857284 |
Physical Description: | 1 online resource |
LEADER | 10868cam a2200421 i 4500 | ||
---|---|---|---|
001 | kn-on1345216820 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 220921s2023 mau ob 001 0 eng d | ||
040 | |a YDX |b eng |e rda |c YDX |d YDXIT |d OCLCO |d SFB | ||
020 | |a 9780323885478 |q electronic book | ||
020 | |a 0323885470 |q electronic book | ||
020 | |z 0323857280 | ||
020 | |z 9780323857284 | ||
035 | |a (OCoLC)1345216820 | ||
245 | 0 | 0 | |a Above ground storage tank oil spills : |b applications and case studies / |c edited by Mervin Fingas. |
264 | 1 | |a Cambridge, MA : |b Gulf Professional Publishing, an imprint of Elsevier, |c 2023. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Front Cover -- Above Ground Storage Tank Oil Spills -- Copyright Page -- Contents -- List of contributors -- Preface -- Oils spilled on land -- Oils spilled on water -- Reference -- Acknowledgment -- Introduction -- 1 Preventative design and issues -- 1. Assessment of oil storage tanks performance containing cracks and cavities -- 1.1 Introduction -- 1.2 Various types of oil storage tanks and their components -- 1.2.1 Main components of an oil storage reservoir -- 1.3 Common defects in the oil storage tank and their causes -- 1.3.1 Corrosion -- 1.3.1.1 Classification of corrosion -- 1.3.1.2 Pitting corrosion -- 1.3.1.3 Corrosion in oil storage tanks -- 1.3.2 Cracking -- 1.4 Design, construction, technical inspection, and repair standards -- 1.5 Methods of dealing with defect damage to prevent decommissioning of storage tanks -- 1.5.1 Diagnosis of defects -- 1.5.2 Non-destructive methods of identifying locations and corrosion rates in tanks -- 1.5.2.1 Eddy current test -- 1.5.2.2 Acoustic emissions method -- 1.5.2.3 Digital radiography -- 1.5.3 Methods for dealing with crack defects in oil storage tanks -- 1.5.4 Creating a suitable cover for the inner surface of the tanks -- 1.5.5 Cathodic protection inside tanks -- 1.6 Analysis of tank behavior with defects -- 1.6.1 Finite element simulations -- 1.6.1.1 Finite element model of crack and pitting corrosion -- 1.6.2 Taguchi approach -- 1.6.3 Multiple regression techniques -- 1.6.4 Response surface method -- 1.7 Conclusions -- References -- 2. Wind effect on atmospheric tanks -- 2.1 Introduction -- 2.2 History of natural events affecting industrial equipment -- 2.2.1 Natural hazards -- 2.2.2 Exposure and vulnerability -- 2.2.3 Risk -- 2.3 Storage tanks and strong winds -- 2.3.1 Strong winds as hazards -- 2.3.2 Atmospheric above-ground tanks characterization -- 2.3.2.1 Storage tank shell. | |
505 | 8 | |a 2.3.2.2 Storage tank roof -- 2.3.2.3 Storage tank base -- 2.3.3 Definition of possible accidental scenarios -- 2.3.4 Structural and natural hazard analysis -- 2.3.4.1 Storage tanks damaged by strong winds -- 2.3.4.1.1 Shell buckling -- 2.3.4.1.2 Overturning -- 2.3.4.1.3 Debris impact -- 2.3.4.2 Definition of limit state equations -- 2.3.5 Storage tanks fragility analysis -- 2.3.5.1 Fragility curves -- 2.3.5.2 Failure probability -- 2.3.5.3 Probit functions to estimate damage probability -- 2.3.6 Storage tanks vulnerability analysis -- 2.3.6.1 Frequency of final accidental scenario -- 2.4 Conclusions -- References -- 3. Seismic performance of liquid storage tanks -- 3.1 Introduction -- 3.2 Seismic response -- 3.2.1 Hydrodynamic effects -- 3.2.2 Response of unanchored tanks -- 3.2.3 Response of anchored tanks -- 3.3 Typical failure modes -- 3.4 Shell buckling -- 3.4.1 Analytical solutions -- 3.4.2 Dynamic buckling assessment -- 3.5 Factors affecting the seismic performance -- 3.5.1 Geometrical specifications -- 3.5.2 The relative amount of content -- 3.5.3 Strong ground motion characteristics -- 3.5.4 Fabrication quality and imperfection -- 3.5.5 Corrosion and maintenance -- 3.6 Seismic design codes -- 3.6.1 Seismic performance target -- 3.6.2 Mechanical analogy -- 3.6.3 Vertical seismic effects -- 3.6.4 Anchorage criteria -- 3.6.5 Freeboard requirement -- 3.7 Fragility based seismic performance assessment -- 3.8 New horizons for further developments -- 3.9 Conclusions -- References -- 4. Hurricane performance and assessment models -- 4.1 Introduction -- 4.2 Hurricane failure modes -- 4.2.1 Wind-induced failures -- 4.2.2 Storm surge failures -- 4.2.3 Wave-induced failures -- 4.2.4 Extreme precipitation induced failures -- 4.3 Hurricane performance assessment models -- 4.3.1 Wind load -- 4.3.1.1 Buckling -- 4.3.1.2 Floating roof failure. | |
505 | 8 | |a 4.3.1.3 Other failures -- 4.3.2 Storm surge loads -- 4.3.2.1 Dislocation failures (flotation and sliding) -- 4.3.2.2 Buckling failure -- 4.3.2.3 Other failure modes -- 4.3.2.4 System failure -- 4.3.3 Wave loads -- 4.3.4 Rainfall loads -- 4.4 Discussion -- 4.5 Summary -- References -- 5. Tank design -- 5.1 Torque-free theory of rotating thin shells -- 5.1.1 Geometrical characteristics of general rotating thin shells -- 5.1.2 Geometric characteristics of several common shells -- 5.1.2.1 Cylindrical shell -- 5.1.2.2 Spherical shell -- 5.1.2.3 Ellipsoid shell -- 5.1.3 General equations of the torque-free theory -- 5.1.4 Application conditions for torque-free theory -- 5.1.4.1 Geometric continuity -- 5.1.4.2 Continuous external load -- 5.1.4.3 Continuous constraint -- 5.1.5 Application of torque-free theory -- 5.1.5.1 Effect of gas pressure -- 5.1.5.2 Effect of liquid pressure -- 5.2 The edge problem -- 5.2.1 Reason for the formation of discontinuous stress -- 5.2.2 Calculation method for discontinuous stress -- 5.2.3 Characteristics and treatments of discontinuous stress -- 5.2.3.1 Characteristics of discontinuous stress -- 5.2.3.2 Treatment of discontinuous stress in engineering problems -- 5.3 Design of inner pressure cylinder -- 5.3.1 Strength calculation of internal pressure cylinder -- 5.3.1.1 Tank design -- 5.3.1.2 Tank check -- 5.3.2 Determination of design technical parameters -- 5.3.2.1 The inner diameter of the container Di -- 5.3.2.2 Working pressure pw and design pressure p -- 5.3.2.3 Calculated pressure pc -- 5.3.2.4 Design temperature -- 5.3.2.5 Allowable stress -- 5.3.2.6 Weld joint coefficient & -- phi -- 5.3.2.7 Thickness and additional thickness -- 5.4 Design of internal pressure spherical shell -- 5.5 Design of internal pressure dished head -- 5.5.1 Internal pressure convex dished head -- 5.5.1.1 Hemispherical head. | |
505 | 8 | |a 5.5.1.2 Ellipsoid head -- 5.5.1.3 Dished head -- 5.5.1.4 Spherical crown head -- 5.5.2 Internal pressure cone head thickness calculation -- 5.5.2.1 Conical shell without folding under internal pressure -- 5.5.2.2 Flanged conical shell under internal pressure -- 5.5.2.3 Flathead -- 5.5.2.4 Selection of head -- 5.6 Pressure test -- 5.6.1 Pressure bearing test -- 5.6.1.1 Test medium -- 5.6.1.2 Test pressure -- 5.6.1.3 Stress check -- 5.6.1.4 Test temperature -- 5.6.1.5 Test method -- 5.6.1.6 Acceptable quality level -- 5.6.2 Airtightness test -- 5.7 Summary -- References -- 6. On buckling of oil storage tanks under nearby explosions and fire -- 6.1 Introduction -- 6.2 A review of selected accidents involving explosions and fire in tank farms -- 6.2.1 Case study: The Bayamon Accident in Puerto Rico, 2009 -- 6.2.2 Brief description of other accidents -- 6.2.3 Common features of accidents and lessons learned -- 6.3 Effects due to explosions -- 6.3.1 Basic features of explosions affecting nearby tanks -- 6.3.2 Evidence from small-scale testing of pressures reaching a tank -- 6.4 Modeling pressures due to explosions reaching a target tank -- 6.4.1 Simplified models of pressure distribution around tanks due to a nearby explosion -- 6.4.2 Advanced models of the source of an explosion and its consequences on tanks -- 6.5 Structural behavior of tanks under impulsive loads -- 6.5.1 Computational modeling -- 6.5.2 Dynamic buckling criteria -- 6.5.3 Structural behavior of open-topped tanks with a wind girder under an explosion -- 6.5.4 Effects of explosions in very large tanks -- 6.5.5 Domino effects under blast loads -- 6.6 Effects due to fire -- 6.6.1 Introduction to fire effects in tanks -- 6.6.2 Summary of results from small-scale tests -- 6.7 Modeling fire effects reaching a target tank. | |
505 | 8 | |a 6.7.1 Simplified models of temperature distribution around tanks due to a nearby fire -- 6.7.2 Advanced modeling of temperature distribution around tanks due to a nearby fire -- 6.7.3 Main differences between simplified and advanced models -- 6.8 Structural response and buckling under thermal loads -- 6.8.1 Types of analysis -- 6.8.2 Thermal buckling of tanks -- 6.8.3 Postbuckling behavior -- 6.8.4 Other tank features that modify the structural response -- 6.8.5 Effect of multiple sources of fire -- 6.8.6 Domino effects under fire -- 6.9 Areas for further research -- 6.9.1 Tests on small-scale tanks under thermal loads -- 6.9.2 Tests on small-scale tanks under blast loads -- 6.9.3 Modeling tanks under fire -- 6.9.4 Modeling tanks under blast loads -- 6.9.5 Design recommendations -- 6.9.6 Fragility and risk assessment -- Acknowledgments -- Nomenclature -- Acronyms -- References -- Appendix 6.1: Summary of critical temperatures for tanks with a conical roof -- 2 Case histories -- 7. The Ashland oil spill -- 7.1 Incident summary -- 7.2 Background -- 7.3 Initial incident and response actions -- 7.4 Findings and lessons learned concerning the response -- 7.5 Drinking-water response actions -- 7.6 Findings and lessons learned water supplies -- 7.6.1 Contaminated marine debris -- 7.7 Crisis management response actions -- 7.8 Crisis management findings and lessons learned -- 7.9 The tank that failed -- 7.10 Causes of tank failure findings and lessons learned -- 7.11 Followup activities and the aftermath of the Ashland oil spill incident -- References -- Further reading -- 3 Legislation -- 8. An overview of typical legislation governing the design, construction, and operation of storage tanks -- 8.1 Introduction -- 8.2 Basics of regulation -- 8.3 Siting -- 8.4 Separations -- 8.5 Identification of storage facilities -- 8.6 Construction -- 8.7 Dike construction. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Storage tanks. | |
650 | 0 | |a Oil spills. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Fingas, Mervin, |e editor. | |
776 | 0 | 8 | |c Original |z 0323857280 |z 9780323857284 |w (OCoLC)1289364569 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpAGSTOSAA/above-ground-storage?kpromoter=marc |y Full text |