Gas Turbine Blade Cooling.

Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter...

Full description

Saved in:
Bibliographic Details
Format: eBook
Language: English
Published: SAE International.
Subjects:
ISBN: 0768095069
9780768095067
9780768095036
0768095034
1523140321
9781523140329
Physical Description: 1 online resource

Cover

Table of contents

LEADER 05704cam a2200433M 4500
001 kn-on1287869963
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 210616s2018uuuuxx uu o u| eng d
040 |a SOE  |b eng  |c SOE  |d UKAHL  |d EBLCP  |d OCLCQ  |d SFB  |d OCLCF  |d OCLCO  |d OCLCL 
020 |a 0768095069 
020 |a 9780768095067 
020 |a 9780768095036  |q (e-book) 
020 |a 0768095034 
020 |a 1523140321 
020 |a 9781523140329 
035 |a (OCoLC)1287869963  |z (OCoLC)1284939609  |z (OCoLC)1289797170  |z (OCoLC)1373991439 
245 0 0 |a Gas Turbine Blade Cooling. 
260 |b SAE International. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover -- Table of contents -- Overview -- Introduction -- CHAPTER 1 High Temperature Turbine Design Considerations -- Material Properties -- Manufacturing Processes -- Cooling Techniques -- Cooling Flow -- Cooling Air Temperature -- Mixing Losses -- Aerodynamic Losses -- Mechanical Design -- Mechanical and Thermal Life -- Metallurgical Stability -- Coatings -- Coating Interactions -- Summary -- Nomenclature -- Acknowledgments -- References -- CHAPTER 2 Summary of NASA Aerodynamic and Heat Transfer Studies in Turbine Vanes and Blades -- Aerodynamic Studies -- Cascade Tests 
505 8 |a Coolant Hole Angle Orientation -- Single and Multirow Coolant Ejection -- Full-Film-Cooled Vane -- Varying Primary-to-Coolant Temperature Ratio -- Effect of Ceramic Coating on Vane Efficiency -- Rotating Stage Tests -- Description of Turbines -- Test Results -- Cooling Studies -- Flat-Plate Heat Transfer Investigations -- Cascade and Engine Investigations -- Summary of Major Results -- Current Programs -- Film Cooling -- Endwall Cooling -- Impingement Cooling -- Thermal Barrier Coatings -- References -- Symbols -- Subscripts -- CHAPTER 3 Cooling Modern Aero Engine Turbine Blades and Vanes 
505 8 |a Part I by Arthur Hare -- Extent of Application of Cooling -- Purposes of Cooling -- Degree of Cooling -- Some Effects on Engine Functioning -- Some Effects on Design -- Some Effects on Engine Development -- Effect on Manufacturing Cost -- Summary -- Part II by H.H. Malley -- Turbine Entry Temperature -- Blade Cooling Level -- Material Creep Strength -- Cooling Air Feed System -- Combustion-Chamber Exit Temperature Traverse -- Nozzle Guide Vane Cooling -- Early Standard of Vane -- Vane with "Jet Cooled" Leading Edge -- Vane with "Tube Cooling" -- Turbine Blade Cooling -- "Triple Pass" Cooling 
505 8 |a "Double Pass" Cooling -- "Single Pass" Cooling -- Turbine Blade Problems -- Thermal Fatigue -- Oxidation and Corrosion -- Creep -- Future Trends -- CHAPTER 4 An Investigation of Convective Cooling of Gas Turbine Blades Using Intermittent Cooling Air -- Introduction -- Results of Prior Investigations -- Experimental Results -- Analysis and Correlation -- Conclusions -- Summary -- References -- CHAPTER 5 The Prospects of Liquid Cooling for Turbines -- History of Liquid Cooling -- Possibilities for Turbine Liquid Cooling -- A Critique of Demonstrated Liquid-Cooled Turbines 
505 8 |a Prospects for Turbine Liquid Cooling -- A Case Study: The Cooled Radial Turbine -- Cycle Impact of Turbine Cooling -- Turbine Aerodynamic Design -- Turbine Cooling -- Summary -- References -- Appendix A Cycle Performance Data for Small Gas Turbine Components -- Appendix B Typical Turbine Design Calculations -- Turbine Aerodynamic Design -- Turbine Cooling Design -- Nomenclature -- Subscripts -- CHAPTER 6 Feasibility Demonstration of a Small Fluid-Cooled Turbine at 2300°F -- Aero-Thermodynamic Performance -- Turbine -- Correction Factor Analysis -- Turbine Analysis -- Heat Transfer -- Discussion 
504 |a Includes bibliographical references. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Gas-turbines  |x Cooling. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 |z 0-7680-9502-6 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpGTBC0001/gas-turbine-blade?kpromoter=marc  |y Full text