Nanotubes and nanowires

Nanotubes (both of carbon and inorganic materials) can be made in a variety of ways, demonstrating a wide range of fascinating properties. Many of these, such as high mechanical strength and interesting electronic properties relate directly to potential applications. Nanowires have been made from a...

Full description

Saved in:
Bibliographic Details
Main Authors: Rao, C. N. R. 1934- (Author), Govindaraj, A., (Author), Panchakarla, Leela Srinivas, (Author)
Format: eBook
Language: English
Published: London : Royal Society of Chemistry, [2022]
Edition: 3rd edition.
Series: RSC nanoscience & nanotechnology ; 52.
Subjects:
ISBN: 9781788019644
1788019644
9781788019637
1788019636
9781788017824
178801782X
Physical Description: 1 online resource

Cover

Table of contents

LEADER 11222cam a2200517 i 4500
001 kn-on1284931830
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 211109s2022 enk o 000 0 eng d
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d YDX  |d UKRSC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SFB 
020 |a 9781788019644  |q (electronic book) 
020 |a 1788019644  |q (electronic book) 
020 |a 9781788019637  |q (electronic book) 
020 |a 1788019636  |q (electronic book) 
020 |z 9781788017824  |q (hardcover) 
020 |z 178801782X  |q (hardcover) 
035 |a (OCoLC)1284931830 
100 1 |a Rao, C. N. R.  |q (Chintamani Nagesa Ramachandra),  |d 1934-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJyCHbVXvXm8gJvtb7mTpP 
245 1 0 |a Nanotubes and nanowires /  |c by C.N.R. Rao, A. Govindara and Leela Srinivas Panchakarla. 
250 |a 3rd edition. 
264 1 |a London :  |b Royal Society of Chemistry,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nanoscience & nanotechnology series ;  |v no. 52 
500 |a Previous edition: 2011. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Nanotubes (both of carbon and inorganic materials) can be made in a variety of ways, demonstrating a wide range of fascinating properties. Many of these, such as high mechanical strength and interesting electronic properties relate directly to potential applications. Nanowires have been made from a vast array of inorganic materials and provide great scope for further research into their properties and possible applications. Chapters in this book systematically describe the fundamentals and applications of nanotubes and nanowires, providing a comprehensive and up-to-date survey of the research area, including synthesis, characterisation, properties and applications. This new edition of Nanotubes and Nanowires includes an extensive list of references and is ideal both for graduates needing an introduction to the field of nanomaterials as well as for professionals and researchers in academia and industry. Review of Nanotubes and Nanowires 1st Edition: This book does a truly admirable job of summarizing the literature in this rapidly changing field. Journal of the American Chemical Society, 2006, 128, 4163-4164 Review of Nanotubes and Nanowires 2nd Edition: Rao and Govindaraj do a superb job of distilling the huge literature on inorganic nanotubes and nanowires. Chemistry & Industry, 2011, 24, 27 
505 0 |a Cover -- Nanotubes and Nanowires: 3rd Edition -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Chapter 1 -- Carbon Nanotubes -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Multi-­walled Carbon Nanotubes -- 1.2.1.1 Chemical Vapor Deposition (CVD) -- 1.2.1.2 Plasma-­enhanced Chemical Vapor Deposition -- 1.2.1.3 Thermal Chemical Vapor Deposition -- 1.2.1.4 Vapor Phase Growth -- 1.2.1.5 Electrochemical Synthesis -- 1.2.1.6 Use of Supercritical Fluids -- 1.2.1.7 Solvothermal Procedures -- 1.2.1.8 Microwave Synthesis -- 1.2.2 Aligned Nanotube Bundles and Micropatterning -- 1.2.3 Single-­walled Carbon Nanotubes -- 1.2.3.1 Optical Plasma Control -- 1.2.3.2 Improvement of Oxidation Resistance -- 1.2.3.3 Laser Vaporization -- 1.2.3.4 Pyrolysis or Vapor Phase Deposition -- 1.2.3.5 Chemical Vapor Deposition (CVD) -- 1.2.3.6 Alcohol Catalytic CVD -- 1.2.3.7 Aerogel-­supported Chemical Vapor Deposition -- 1.2.3.8 Laser-­assisted Thermal Chemical Vapor Deposition -- 1.2.3.9 CoMoCat Process -- 1.2.3.10 High-­pressure CO Disproportionation -- 1.2.3.11 Flame Synthesis -- 1.2.3.12 Sonochemical Route -- 1.2.4 Direct Spinning of Nanotube Yarns -- 1.2.5 Selective Preparation of Semiconducting and Metallic SWNTs -- 1.2.6 Chirality-­defined Synthesis of SWNTs -- 1.2.6.1 Direct Controlled Synthesis -- 1.2.6.2 Postsynthesis Separation Approaches -- 1.2.7 Junction Nanotubes -- 1.2.8 Peapods and Double-­walled Nanotubes -- 1.2.9 Mechanism of Formation of Nanotubes -- 1.2.10 Purification of SWNTs -- 1.2.11 Separation of Metallic and Semiconducting SWNTs -- 1.3 Structure, Spectra and Characterization -- 1.3.1 General Structural Features -- 1.3.2 Raman and Other Spectroscopies -- 1.3.2.1 The G-­band -- 1.3.2.2 The Radial Breathing Mode (RBM) -- 1.3.2.3 Dispersive G'-­band (2D band) -- 1.3.2.4 Disorder-­induced D Band. 
505 8 |a 1.3.2.5 Optical Spectroscopy -- 1.3.3 Pressure-­induced Transformations -- 1.3.4 Electronic Structure -- References -- Chapter 2 -- Chemically Modified Nanotubes -- 2.1 Introduction -- 2.2 Doping with Boron and Nitrogen -- 2.3 Intercalation by Alkali Metals -- 2.4 Metal ↔ Semiconductor Transitions Induced by Molecular Interaction -- 2.5 Opening and Filling of Nanotubes -- 2.6 Decoration and Coating -- 2.7 Reactivity, Solubilization and Functionalization -- 2.8 Covalent Functionalization -- 2.8.1 Halogenation -- 2.8.2 End-­group Functionalization -- 2.8.3 Cycloaddition -- 2.8.4 Radical Addition -- 2.8.5 Nucleophilic Addition -- 2.8.6 Covalent Polymer Composites -- 2.8.7 Other Covalent Functionalization Methods -- 2.9 Noncovalent Functionalization -- 2.9.1 Noncovalent Polymer Composites -- 2.9.2 Functionalization Using Surfactants and Polyaromatics -- 2.9.3 Interaction with Biomolecules -- 2.9.4 Endrohedral Filling -- 2.10 Functionalization Using Fluorous Chemistry and Click Chemistry -- References -- Chapter 3 -- Properties and Applications of Carbon Nanotubes -- 3.1 Electronic Properties -- 3.2 Phase Transitions and Fluid Mechanics -- 3.3 Carbon Nanotube Composites -- 3.4 Applications, Potential and Otherwise -- 3.4.1 Electronic Applications -- 3.4.2 Field-­effect Transistors (FETs) and Related Devices -- 3.4.3 Electromechanical Properties -- 3.4.4 Field Emission -- 3.4.5 Energy Storage and Conversion: Supercapacitors, Solar Cells and Actuators -- 3.4.6 Sensors and Probes -- 3.4.7 Biological Aspects -- 3.4.8 Mechanical Properties and Related Devices -- 3.4.9 Lithium Batteries -- 3.4.10 Gas Adsorption and Hydrogen Storage -- 3.4.11 Other Useful Properties and Devices -- References -- Chapter 4 -- Inorganic Nanotubes -- 4.1 Introduction -- 4.2 Synthetic Methods -- 4.3 Nanotubes of Different Materials -- 4.3.1 Nanotubes of Elemental Materials. 
505 8 |a 4.3.2 Metal Chalcogenide Nanotubes -- 4.3.3 Pnictide Nanotubes -- 4.3.4 Nanotubes of Carbides and Other Materials -- 4.3.5 Metal Oxide Nanotubes -- 4.3.5.1 SiO2 Nanotubes -- 4.3.5.2 TiO2 Nanotubes -- 4.3.5.3 ZnO, CdO and Al2O3 Nanotubes -- 4.3.5.4 Nanotubes of Vanadium and Niobium Oxides -- 4.3.5.5 Nanotubes of Other Transition Metal Oxides -- 4.3.5.6 Other Binary Oxide Nanotubes -- 4.3.5.7 Nanotubes of Titanates and Other Complex Oxides -- 4.3.5.8 Nanotubes Based on Complex Inorganic Nanostructures -- 4.3.6 Misfit Layered Nanotubes -- 4.3.6.1 Chalcogenide-­based Misfit Layered Nanotubes -- 4.3.6.2 Quaternary Misfit Nanotubes -- 4.3.6.3 Oxide-­based Misfit Nanotubes -- 4.4 Properties -- 4.4.1 Mechanical Properties -- 4.4.2 Electronic, Magnetic, Optical and Related Properties -- 4.4.2.1 Field-­effect Transistors -- 4.4.2.2 Electromechanical Properties -- 4.4.2.3 Optoelectronic Properties -- 4.4.2.4 Field Emission -- 4.4.3 Tribological Properties -- 4.4.4 Thermal Properties -- 4.5 Solubilization and Functionalization -- 4.6 Applications -- References -- Chapter 5 -- Synthetic Strategies for Inorganic Nanowires -- 5.1 Introduction -- 5.2 Synthetic Strategies -- 5.2.1 Vapour-­phase Growth -- 5.2.1.1 Chemical Vapor Deposition (CVD) -- 5.2.1.2 Laser Ablation Technique -- 5.2.1.3 Molecular-­beam Epitaxy -- 5.2.2 Growth Mechanisms -- 5.2.2.1 Vapor-Liquid-Solid (VLS) Growth -- 5.2.2.2 Oxide-­assisted Growth -- 5.2.2.3 Vapour-Solid Growth -- 5.2.2.4 Carbothermal Reactions -- 5.2.3 Solution-­based Growth -- 5.2.3.1 Anisotropic Structures -- 5.2.3.2 Template-­based Synthesis -- 5.2.3.3 Solution-Liquid-Solid Process -- 5.2.3.4 Solvothermal Synthesis -- 5.3 Growth Control and Integration -- References -- Chapter 6 -- Elemental Nanowires -- 6.1 Introduction -- 6.2 Silicon -- 6.3 Germanium -- 6.4 Boron -- 6.5 In, Sn, Pb, Sb and Bi -- 6.6 Se and Te -- 6.7 Gold. 
505 8 |a 6.8 Silver -- 6.9 Iron and Cobalt -- 6.10 Nickel and Copper -- 6.11 Other Metals and Alloys -- 6.12 Trimetallic Nanowires -- 6.13 Segmented Heterojunction Nanowires -- References -- Chapter 7 -- Metal Oxide Nanowires -- 7.1 MgO -- 7.2 Al2O3, Ga2O3 and In2O3 -- 7.3 SnO2 -- 7.4 CeO2, SiO2 and GeO2 -- 7.5 TiO2 -- 7.6 CrO2, MnO2 and Mn3O4 -- 7.7 CuxO -- 7.8 ZnO -- 7.9 Vanadium and Tungsten Oxides -- 7.10 Other Binary Oxides -- 7.11 Ternary and Quarternary Oxides -- References -- Chapter 8 -- Metal Nitride, Carbide and Boride Nanowires -- 8.1 BN -- 8.2 AlN -- 8.3 GaN -- 8.4 InN -- 8.5 Si3N4 and Si2N2O -- 8.6 Metal Carbide and Boride Nanowires -- 8.6.1 BC -- 8.6.2 SiC -- 8.6.3 Other Carbide Nanowires -- 8.6.4 Borides -- References -- Chapter 9 -- Nanowires of Metal Chalcogenides, Phosphides and Other Semiconductor Materials -- 9.1 Metal Chalcogenide -- 9.1.1 CdS -- 9.1.2 CdSe and CdTe -- 9.1.3 PbS, PbSe and PbTe -- 9.1.4 CuS and CuSe -- 9.1.5 ZnS and ZnSe -- 9.1.6 NbS2, NbSe2 and NbSe3 -- 9.1.7 Bismuth Chalcogenides -- 9.1.8 Other Chalcogenides -- 9.2 GaAs, InP and Other Semiconductor Nanowires -- 9.2.1 GaAs -- 9.2.2 InP and GaP -- 9.3 Miscellaneous Nanowires -- 9.4 Coaxial Nanowires and Coating Nanowires -- 9.5 Perovskite Nanowires -- 9.5.1 Vapor-­phase Synthesis -- 9.5.2 Solution-­phase Synthesis -- 9.5.3 Template-­assisted Methods -- References -- Chapter 10 -- Functionalization and Useful Properties and Potential Applications of Nanowires -- 10.1 Self Assembly and Functionalization -- 10.2 Useful Properties and Potential Applications -- 10.2.1 Optical Properties -- 10.2.2 Photonic Applications of Perovskite NWs -- 10.2.2.1 Perovskite NW Lasers -- 10.2.2.2 Photodetectors -- 10.2.3 Electrical and Magnetic Properties -- 10.2.4 Transistors and Devices -- 10.2.5 Field Emission -- 10.2.6 Energy Storage and Conversion -- 10.2.6.1 Solar Cells. 
505 8 |a 10.2.6.2 Supercapacitor, Lithium Batteries and Fuel Cells -- 10.2.7 Electromechanical Devices -- 10.2.8 Sensor Applications and Other Aspects -- 10.2.9 Mechanical Properties -- 10.2.10 Thermoelectric Properties -- 10.2.11 Biological Aspects -- References -- Subject Index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Nanotubes. 
650 0 |a Nanowires. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Govindaraj, A.,  |e author. 
700 1 |a Panchakarla, Leela Srinivas,  |e author. 
776 0 8 |i Print version:  |a Rao, C.N.R. (Chintamani Nagesa Ramachandra), 1934-  |t Nanotubes and nanowires.  |b Third edition  |z 9781788017824  |w (OCoLC)1272897518 
830 0 |a RSC nanoscience & nanotechnology ;  |v 52. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpNNE00011/nanotubes-and-nanowires?kpromoter=marc  |y Full text