Data science solutions with Python : fast and scalable models using Keras, Pyspark Mllib, H2O, XGBoost, and scikit-Learn

Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. The book covers an in-memory, distribute...

Full description

Saved in:
Bibliographic Details
Main Author: Tshepo, Chris Nokeri.
Format: eBook
Language: English
Published: [United States] : Apress, 2022.
Subjects:
ISBN: 9781484277621
1484277627
1484277619
9781484277614
Physical Description: 1 online resource

Cover

Table of contents

LEADER 04485cam a2200397 a 4500
001 kn-on1281134804
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 211029s2022 xxu o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d OCLCF  |d OCLCO  |d GW5XE  |d EBLCP  |d TOH  |d ORMDA  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
020 |a 9781484277621  |q (electronic bk.) 
020 |a 1484277627  |q (electronic bk.) 
020 |z 1484277619 
020 |z 9781484277614 
024 7 |a 10.1007/978-1-4842-7762-1  |2 doi 
035 |a (OCoLC)1281134804  |z (OCoLC)1280459456  |z (OCoLC)1280599125  |z (OCoLC)1281973707  |z (OCoLC)1283854399  |z (OCoLC)1311344387  |z (OCoLC)1311344858 
100 1 |a Tshepo, Chris Nokeri. 
245 1 0 |a Data science solutions with Python :  |b fast and scalable models using Keras, Pyspark Mllib, H2O, XGBoost, and scikit-Learn /  |c Tshepo Chris Nokeri. 
260 |a [United States] :  |b Apress,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: Understanding Machine Learning and Deep Learning -- Chapter 2: Big Data Frameworks and ML and DL Frameworks -- Chapter 3: The Parametric Method Linear Regression -- Chapter 4: Survival Regression Analysis.-Chapter 5:The Non-Parametric Method - Classification -- Chapter 6:Tree-based Modelling and Gradient Boosting -- Chapter 7: Artificial Neural Networks -- Chapter 8: Cluster Analysis using K-Means -- Chapter 9: Dimension Reduction Principal Components Analysis -- Chapter 10: Automated Machine Learning. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras. The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked. This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics. What You Will Learn Understand widespread supervised and unsupervised learning, including key dimension reduction techniques Know the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learning Integrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworks Design, build, test, and validate skilled machine models and deep learning models Optimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alteration. 
500 |a Includes index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |z 1484277619  |z 9781484277614  |w (OCoLC)1266897033 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpDSSPFSM1/data-science-solutions?kpromoter=marc  |y Full text